Requirements-

The SOPHISTs

»Short & clever«

The SOPHIST
RE-PRIMER

SOPHIST g



The SOPHISTs SOPHIST GmbH
Vordere Cramergasse 13
90478 Nuremberg
Germany
www.sophist.de

(¥ @ SOPHIST GmbH
(7) @SOPHIST.GmbH
(%] /sophistgmbh

& blog.sophist.de

18t edition 2021

Translated from German by Joachim Kurrer,

SOPHIST GmbH

Copy Editing & Production: David Nawzad, SOPHIST GmbH
Cover Design and Layout: Heike Baumgartner, Blro Hochweiss

Copyright: SOPHIST GmbH

This work is protected by copyright laws.

All rights, including translation, reprinting and reproduction of the book, or parts
thereof, are reserved. This work may not be reproduced, edited or copied in whole
or in part, by electronic means or otherwise (photocopy, microfilm or other media)
without the written consent of the SOPHIST GmbH.

It should be noted that all software and hardware names as well as brand and
product names of the respective companies are normally subject to the registered
trademarks andpatent protections.

While reasonable care has been exercised in the preparation of this brochure, the
author and the SOPHIST GmbH assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.



Reuirements-

The SOPHISTs

»Short & clever«

The SOPHIST
RE-PRIMER



www.sophist.de



A\ &

SOPHIST .)

, Trainings ), UPDATE

—_ \ WA
What'‘s new about it?“

All SOPHIST training courses are designed in accordance with the
latest knowledge. Among other things, our trainers follow the
principles of the “...from the Back of the Room“ method in order to
convey training content in a sustainable way.

An activating learning evironment - more movement, less text,
more interaction with the paricipants and surprising exercise con-
cepts - makes learning fun and efficient.

Your benefits? l‘

You benefit not only from the know- how of the met-
hod leaders, but also from a didactic implementation

that leaves its mark.
- n \
? ! 5

»» .. Curious now?

5
F g

Contact us without obligation:

+49 (0) 911 40900-0
heureka@sophist.de /




Table of contents

Introductionand Motivation . ........... ... ... ... ... 8

What is Requirements Engineering? .. .................... 10
2.1 Classification of Requirements. . ...ttt 12
2.2 Quality of Requirements. ...t 14
2.3 Sourcesof Requirements ...........uiiiiiiii it 15
2.4 Main Activities of Requirements Engineering....................... 16

ElicitingKnowledge. . ....... ..o 19
3.1 Goals, Sourcesand System Context..............ciuiiiienennnn... 19
3.2 Elicitation of Requirements ......... ... .. i 20
3.3 Identifying Linguistic Effects — The SOPHIST Set of REgulations ........ 22

Deriving Good Requirements. ..o, 25
4.1 Activities for Analyzing Requirements. ...................ciion... 25
4.2 Validating and Consolidating Requirements........................ 28

Documenting and Imparting Requirements. ............... 32
5.1 Imparting Requirements without Documentation................... 32
5.2 Imparting Requirements with Documentation...................... 34

Requirements Management ............ ... ... .. . ..... 37
6.1 How much Requirements Management Makes Sense?............... 38
6.2 Versioningand Baselines ........... ... .. i 39
6.3 Traceability. .. ... ..o 40
6.4 Change and Release Management ...............coiiiiiinennnn.. 41

Establishment of an Improved Requirements Engineering . . . .43

7.1 Changes withinan Organization. ............. ... ... iiiiiiian... 43
7.2 The Establishmentisa Project! ......... ... ... .. ... . ... 44
7.3 AnAgile DesignofChanges ..., 44
7.4 Work Packages of an Establishment .............................. 47

Requirements Engineering and Agility .................... 48

Systems Engineering. ......... i e 52
9.1 Definitionand PUrpose. ...t e 52
9.2 Embedding of Requirements Engineering.......................... 54

10. Requirements Engineering for Smart Ecosystems and as a Driver
of Digital Transformation . ......... ... . . i, 56



11.

12.

13.

14.

Table of contents

Business Analysis, Requirements Engineering or Both? ... ... 60
Videos within Requirements Engineering.................. 63
Requirements Engineering for Product Lines and Families. . . .66

CoNCIUSION . .« v e e 68



Introduction and Motivation

1. Introduction and Motivation

We SOPHISTs have been working as consultants and trainers in requirements
engineering (RE) for more than 20 years. We support customers from many different
industries, from pure software development for insurances and banks to the
execution of hardware-oriented systems engineering projects in the automotive
sector and the planning of building complexes. The focus of our work is the elicitation
of requirements, derivation of good system requirements as well as the management
of requirements. Furthermore we support in imparting requirements. Depending on
the project conditions we e.g., use approaches that are based on the documentation
of requirements or storytelling. We also work with other topics, which are closely
related to requirements engineering: requirements engineering within a systems
engineering approach, creating a foundation for requirements by defining business
processes and considering special aspects that come along with requirements that
apply to a particular version of the product. Additionally, we pick up on current topics
(e.g., Smart Ecosystems, Digital Transformation) and trends (e.g., Videos in RE,
Crowd-RE...) in our daily work. Furthermore, we focus on the establishment of
requirements engineering as well as agile approaches.

Our life is strongly influenced by IT-systems — sometimes it even depends on them.
They make our existence considerably more pleasant, they structure and co-create
it. They provide information, support decision making and work processes, as well
as automate processes. They also open up opportunities that we have not even
dreamed of a few years ago. We live in smart homes, our cars consist of intelligent
components, our home appliances are able to communicate with us and our smart
phone provides us access to the rest of the world; anytime and anywhere. Industries
manufacture their products in a “smart” way, agriculture, energy supply and the
health care system, etc. perform better, because systems monitor and optimize the
creation of value. To ensure, all of this will stay a dream for humanity and not turn



Introduction and Motivation

into a nightmare, it is crucial to make sure these systems do what they are supposed
to do, i.e. what we expect them to. This is where requirements engineering comes
into play. The complexity of the tasks systems execute is increasing and needs to be
invented or identified, analyzed and imparted. The knowledge (the requirements)
often needs to be documented and managed. Before that, the business processes
that are supported by the system need to be understood and drafted up. The trick
is to consider the manifold constraints. Requirements engineering in this context
means to find the right approach for the right purpose.

In order to make dull theory a bit more exciting and to make it easier to comprehend
the topics addressed in this brochure, we added some examples. They are based on
the development of a smart home system (SHS).

Additionally, there are videos and animated graphics covering some selected topics
on our homepage. The respective link is embedded in the following icon:

Many thanks to all SOPHISTs, who have contributed to this brochure — the entire
“requirements engineering and management” book team, the technical and linguistic
reviewers and the discussion partners who have contributed to the contents and the
quality of this brochure.



What is Requirements Engineering

2. What is Requirements Engineering?

The term requirements engineering can be loosely interpreted as follows: dealing
with requirements concurrent to engineering principles. Working with requirements
should therefore be repeatable, comprehensible and justified. As requirements
engineering is usually part of development projects with constraints like time and
money, something else matters: It should be executed appropriately. Our goal is to
ensure that requirements engineering creates requirements exactly in the quality
needed for further development.

These thoughts reflect in the following definition:

Definition of the discipline requirements engineering according to IREB
[CPRE20]:

The systematic and disciplined approach to the specification and management of
requirements with the goal of:
H understanding the stakeholders’ desires and needs and

B minimizing the risk of delivering a system that does not meet these desires
and needs.

Unsurprisingly, the term requirement is of pivotal importance in this definition.
We SOPHISTs have found a definition of the term requirement that suits us well in
practice, and has proven to be very comprehensible, comprehensive and sufficiently
specific:

Definition of the term requirement according to SOPHIST:

A requirement is a statement regarding a characteristic or performance of a
product, a process or the people involved in the process.

Obviously we interpret the term requirement broader than usual. On the one hand,
it is more than the system to be developed demands (the requirement’s subject of
observation). On the other hand, we want to avoid stipulating a
form of representation for requirements. For us, a requirement
can be documented or imparted in various ways during a
project. Here are some examples:

B classically, textually, possibly using templates,
as a User Story or Epic,

|
B asastory using storytelling,
E model-based.



What is Requirements Engineering

Furthermore, this definition of requirements engineering makes the so-called stake-
holder the focus of interest. Usually, the stakeholder is being defined as a role with
direct or indirect influence to the requirements. A direct influence in this context
means, that a stakeholder provides requirements. (see paragraph 2.3 — “Sources for
Requirements”).

The close cooperation between a requirements engineer (also referred to as
requirements or systems analyst) and the stakeholders demands certain qualities
of the requirements engineer. These qualities exceed the methodical and subject-
specific abilities required in the application area of the system to be specified. Usually
requirements engineering is concerned with communication between persons who
have different goals, educational backgrounds and characteristics. These abilities
have proven to be very important.

Figure 2.1 illustrates the abilities a requirements engineer needs according to IREB
[CPRE20]. There can be found a distinction between basic competencies (left) and
competencies that are highly relevant, especially for determining requirements
(right).

Additional characteristics for determining requirements

conflict solving abilities - self-awareness

context awareness

persuasiveness
motivating manner

SRy leadership personality

analytical thinking flexibility

. . reflection
communication skills

neutrality

presentation skills
intercultural competencies

self-confidence ethical conscience

Personal traits of a requirements engineer alongside subject-specific and

methodical competencies

Figure 2.1: Personal traits of a requirements engineer

In the following paragraphs, we will present some basic knowledge that is essential
for the work with requirements.



What is Requirements Engineering

2.1 Classification of Requirements

Generally, there is a variety of options on how to classify requirements. Classifications
should always have a certain objective. In this chapter, we will present the types
of classifications that help us in our work with requirements and therefore seem
valuable. Every requirement can be categorized according to the classifications
described in this chapter. The classification allows defining tasks regarding the
requirements engineering approach. For instance, sometimes the elicitation can be
different for functional requirements and non-functional requirements; sometimes
there might be a demand for finding the fitting upper requirement for pre-existing
more detailed requirements.

Traditional classification according to types

The following illustration gives an overview of the different types of requirements
that are most commonly mentioned in literature.

User interface requirements

Technological constraints Quality requirements

Functional
requirements

Legal / contractual Requirements for
requirements other deliverables

Requirements for activities

<= functional requirements
@ = non-functional requirements

Figure 2.2: Types of requirements

The two most frequently needed types are:

B Functional Requirements: which functions does the system provide to a user or
neighboring system under certain conditions?

B Quality-of-service requirements: they specify the desired quality of the system,
mostly related to functions (e.g., the performance of a function or the availability
of the entire system).

Classification according to legal obligation

The legal obligation describes the importance a stakeholder ascribes to the individual
requirement. The following types can be distinguished:

To obtain a complete set of requirements, all levels of detail for requirements should



What is Requirements Engineering

be specified in a way that provides enough information for everyone involved.
However, this does not necessarily mean that every requirement needs to be broken
down to the smallest level of detail.

Leeal oblicati English
egal obligation keyword

Obligation Shall

Wish Should
Intention Will

Figure 2.3: Proven keywords for legal obligation

Classification according to responsibility

An important distinction for requirements is the person responsible for them. As we will see
later on, one of the purposes of Requirements Engineering is to take all the input for a
development project, the source requirements, and derive reliable system requirements.
This creates a relationship between these two types of requirements.

Source of requirement Requirements-
(e.g. stakeholder) Engineer

Original requirements System requirements

wishes, instructions, ideas, product backlog, customer requi-

Requirements

features, customer requirements rements specification, product

specification, laws, norms Engineering requirements specification

Figure 2.4: Inputs and outputs of a requirements engineer

Classification according to subject matter

The probably most important distinction for the classification of requirements is
made based on the subject matter. Does the requirement refer to the considered
system in the project, to one of its components or to a business process supported
by the system? Is the requirement located outside of the considered system, in its
context? Especially in the area of systems engineering, where several levels of the
system exist, the requirements shall be allocated distinctly to a subject matter (see
paragraph 9 — “Systems engineering”).

The characteristics of a requirement really matter. That’s why we wrote more about
deriving good requirements in the chapter about analyzing requirements (see para-
graph 4.1 — “Activities for analyzing requirements”).



What is Requirements Engineering

Classification according to the level of detail

At first, this last type of classification seems relevant only in theory. In practice it
can often be found in document landscapes. Requirements can specify other
requirements i.e. they indicate a (technical) solution for a requirement. For example
it can be required, that a smart-home-system shall unlock the front door as soon as
a known person approaches. More details about which characteristics of the person
the system shall check would documented in more refined requirements.

This provides a clear classification of the requirements and therefore assures
comprehensively a certain level of completeness of said requirements.

2.2 Quality of Requirements

As mentioned earlier, Requirements Engineering should be executed appropriately.
This can be defined by the quality of the requirements that should be achieved for
the development.

There are various different approaches for the quality of requirements. All of them
havein common, that they define quality by a series of quality criteria. In the following,
we have listed the criteria SOPHIST use to measure and assess requirements. In doing
so, we differentiate criteria referring to a single requirement from criteria that apply
for a whole set of requirements.

Requirements for classic approaches

For development projects executed in a classical approach the requirements need
to have a high quality. The reason is that these approaches do not include an
integral process step that aims to improve the requirements once they have been
initially created. Instead they rely on the optimistic assumption that requirements
engineering is finished for a set of requirements, as soon as it has been initially
created.

For a requirment: For a requirements specification:

| Complete

Figure 2.5: Quality criteria for requirements in classic procedures

Requirements for agile approaches

To determine the criteria for a single requirement in an agile development project
(normally these will be User Stories) we apply the INVEST principle [Wake03].



What is Requirements Engineering

Independent INVEST

Negotiable

Valuable

Testable )

Estimable

Figure 2.6: The INVEST-principle for a User Story

The criteria for a set of requirements, meaning a backlog, are barely any different
from those that are supposed to apply for a requirements specification in the classical
context.

2.3 Sources of Requirements
Essentially, there are three different sources of requirements:

B Stakeholders: Persons, organizations and institutions that influence the system
a directly or indirectly.

B Documents: Laws, norms, manuals or other documentation can be used to
gather requirements.

B Systems: It is often helpful to analyze a
preceding system or a competitive product.

Most interesting is the group of stakeholders.
They often come from different backgrounds and
therefore have variable goals for the considered
system with their requirements. In the following,
there is an incomplete list of areas that can provide
requirements or even be the trigger for a develop-
ment project.

L d

In a relationship between a commissioning and a contracting organization, the
commissioning company is presumably the most prominent cause for a development
project. It provides the contracting organization with money for the development
(and maybe also for following tasks such as production). By doing that, it significantly
determines the requirements for the future product.

Commissioning organization

Management of innovation/ portfolio /product

On the other hand, the areas stated above often are internal causes for develop-
ment projects. They are responsible for the advancement of pre-existing products
to remain competitive in the market. In a project executed for a customer they may,
however, also demand additional requirements.



What is Requirements Engineering

Problem/ change management

Problem management provides change requests to a system that most commonly
have been identified in later phases of the life cycle (during production, transport,
installation, operation). These can lead to additional or changed requirements. They
might also demand a new development project. Changes of requirements during an
ongoing development project are supported by change management.

2.4 Main Activities of Requirements Engineering

The activities a Requirements Engineer has to carry out can be roughly allocated into
four main activities. These main activities will be discussed in detail later on. In this
brochure we can only depict the most important tasks and aspects of the individual
main activities. For a more detailed presentation, please refer to [Rupp20].

Requirements-Engineering

Eliciting Deriving good Imparting Managing
knowledge requirements requirements requirements

Figure 2.7: The four main activities of requirements engineering

Even though we present the main activities in the order mentioned above, the
individual activities will always be repeated over the course of the system develop-
ment. This could either be caused by an incremental view on the tasks or by the fact
that during the performance of an activity the necessity for another activity grows.

Eliciting knowledge

The first main activity “eliciting knowledge” lays the foundation for further
requirements engineering. If they don’t already exist, the course of the system
development is set by defining visions and goals. Not all sources of requirements, in
particular the stakeholders, are always known, so they must be identified as a basis
for further activities.

Once the sources of requirements are known, the elicitation of requirements for the
system to be developed can begin. Selecting the appropriate elicitation techniques
for each specific development is an important success factor.



What is Requirements Engineering

Deriving good requirements

In order to derive good requirements, first the previously identified demands shall be
analyzed in order to get the most comprehensive idea of the requirements for the
system to be developed. Depending on the process model, this idea must now be
tested. Representatives of different roles in the development can review the
requirements:

B From the point of view of the people
issuing the requirements, the
requirements are checked with regard to
the fulfillment of the expectations of the
system.

B For test the requirements are checked to
see whether corresponding test cases can
be derived.

B The development (especially the
architecture) will check the feasibility of
the requirements.

Depending on the application domain, further
checks may be necessary. In the automotive
industry, for example, it may be necessary £
to check compliance with functional safety=
requirements ([1S026262]). a

Imparting requirements

Sofarthe main activities are covered and a good overview of the needed requirements
is created. Still, the requirements shall support somebody’s work, so they need to be
communicated to the people involved. Here we assume that one either wants to
document the requirements or share their knowledge about the requirements in
another way (storytelling, videos).

If a collection of documented requirements shall be created, there are two
alternatives:

B The system requirements can be documented by using natural language.
B The requirements can be documented model-based.

In our consulting activities a mixed approach between both alternatives always had
the highest benefit and the best acceptance.

Managing requirements

As soon as considering the documentation of requirements, a new challenge is
waiting; the management of these documented requirements. Some decisions have
to be made:



What is Requirements Engineering

O | \ISNH
[ 40H |

J

o]
4]
IS

%0
190
>

o[
0

L
What kind of information do the requirement collections consist of and how are
they structured?

Who is allowed to perform, which actions in the requirements (assign rights and
roles)?

Which additional information is needed in order to manage the requirements?
For example: current state of the requirement, information about variants of
the product.

How shall the traceability be ensured?
Which versioning concept shall be the foundation for the requirements?

Which information needs to be provided in the system development and which
form shall it have?

We assign these and many other decisions and activities to the management of
requirements in order to provide the required information in a comprehensible way
at any time.



Eliciting Knowledge

3. Eliciting Knowledge

Not only is the elicitation of knowledge the first, but one of the most important
activities of requirements engineering. It includes the requirements themselves, but
also other information such as sources, boundaries and business processes. It takes
place in every possible scenario, every process model and for every refinement level
of requirements and it is a little different each time. If the right stakeholders aren’t
identified, the context is set incorrectly or, based on the business processes the right
knowledge isn’t elicited of, requirements engineering is very likely to fail. This doesn’t
mean that all of these activities have to be completed at the beginning - elicitation is
rather a process that endures the whole requirements engineering process.

Alothaschangedinthefield of requirements
engineering in the past years. Digitalization
and concepts like smart cities or smart rural
areas have a significant impact on our social
context and our human interaction. As a
result, IT is making its way into many areas
that were barely affected by it previously. Of
course, most people already have a washing
machine in their house that contains soft-
ware, but the wishes of the users were
often only guessed. Digitalization noticeably
intervenes in areas such as our healthcare system, the delivery of goods, the trans-
portation system and communication. That’s why it is important to understand
the needs of all the different stakeholders. In our consulting, we always adapt RE
methods to the context in which they are applied and to its stakeholders. When
digitalization moves into all areas of life, the systems suddenly affect people who
hardly had contact to IT and who aren’t familiar with their role as stakeholders.

3.1 Goals, Sources and System Context

But first things first: Every project is initiated for a reason or purpose. It needs sources
of requirements, and should have a defined framework to distinguish the necessary
from the unnecessary.

Goals and goal finding

Setting the goals for the system and a project impacts the success of the develop-
ment lastingly. Every system development should start with a definition of goals
with an extent of about half a page. In practice we made good experiences by using
a goal table or a product/project canvas. If goals are not documented, or defined
unclearly, there is no foundation for the subsequent steps or activities. As a result,
the requirements engineer has no specification of the goals the requirements must
meet. Consequently the actual goals may be missed. The process of finding goals
strongly depends on constraints. For inventing a new product, visionary thinking and



Eliciting Knowledge

an open mind to all possible solutions are most important. If an old system shall be
replaced, the focus should primarily be on possible improvements and their impact
on existing functions.

Sources of requirements

Finding the relevant sources of requirements is crucial. Typical sources are documents,
systems and stakeholders of course. A requirements engineer, needs to keep his eyes
open for all imaginable sources of information for requirements. If required sources
are not available, working with personas [Goodwin09] as fictitious representatives of
real people, might be helpful.

System scope and context

The final activity before the actual elicitation of requirements can start is to define
what actually belongs to the considered system (scope) and in contrast, what is out-
side of the system’s boundaries (context) and thus can interact with the system. An
inaccurate scope or context will lead to incomplete or incorrect and sometimes even
to unnecessary requirements.

3.2 Elicitation of Requirements

The goal of the elicitation is to determine requirements that help developing a system
that bring as much benefit as possible to the stakeholders. Thereby the requirements
need to be adapted to the constraints of the project and be elicited with as little
expense as possible. That’s why for the elicitation there shall be an efficient balance
between the risk reduction and cost explosion. In addition professional elicitation
methods fitting to the respected sources are needed. The gathered knowledge is the
foundation on which good requirements are derived, documented, imparted, and
managed.

Precondition for a good elicitation

It can’t be expected that stakeholders present the perfect requirements on a silver
platter. Elicitation of requirements is hard work. These are the most important factors
for a successful elicitation of requirements:

B Basic communication skills

knowledge of representational systems of language

knowing the strengths and weaknesses of each elicitation techniques

analysis of the relevant constraints for the use of elicitation techniques
selecting and combining appropriate elicitation techniques

creating the right atmosphere for the use of elicitation techniques (especially
for creativity techniques)



Eliciting Knowledge

Criteria for the selection of elicitation techniques

Each elicitation technique has its strengths and weaknesses. They are only suitable
for the use under certain conditions. Knowing these conditions and using them to
select a suitable elicitation technique is decisive for the success of the elicitation of
requirements.

B How great is the knowledge of the stakeholder regarding the subject of
observation?

B How high is the motivation of the stakeholders to participate within the
elicitation?

B Is the stakeholder an active person? Does he like to talk or are is he rather
haptically minded?

B How is the local distribution of the stakeholders?
B What time are the stakeholders available?

B Are there any special group dynamics between the stakeholders to be
considered?

The small selection of criteria above demonstrates that choosing the appropriate
elicitation techniques depends on the experience of the requirements engineer.
Four groups of classical elicitation techniques

In order to elicit knowledge a variety of techniques has been developed, which can
be roughly divided into four groups.

B Survey techniques

\

(Questionnaire and interview) are the classics among the investigation techniques
and are based on asking stakeholders about their wishes and needs in a targeted
manner in order to derive requirements from their answers.

B Observation techniques

g

(Field Observation, apprenticing, contextual inquiry) are used if stakeholders cannot

express their knowledge in language or many implicit wishes are expected.

N

B Document-centered techniques

52

(System archaeology and reuse) have their strengths when there is no knowledge
carrier available anymore. In this case the domain logic can only be determined from
the system itself and its documentation.

B Creative techniques

®

(Brainstorming or brainstorming paradox) are used when innovative ideas are
required.



Eliciting Knowledge

New approaches/frameworks - co-creation- —
models, CrowdRE and living labs crf:;QWd

In addition to the elicitation techniques just explained, there is a whole set of
frameworks that combine several investigation techniques.

As a representative, we would like to single out CrowdRE. The attempt is to motivate
an anonymous group of people (crowd) to cooperate by providing an access with the
lowest possible threshold. There are many approaches on how the crowd can be won
and how they contribute. In most cases, electronic means are the standard.

The goal of CrowdRE is also to find so-called unicorns (highly motivated stakeholders
with a lot of knowledge) in the crowd of respondents. We will try to encourage them
to a further cooperation.

3.3 Identifying Linguistic Effects — Egt"
The SOPHIST Set of REgulations werk

In the work with requirements, undesirable linguistic effects can occur especially
during the elicitation phase; in direct communication as well as in writing or reading
requirements. The SOPHIST Set of REgulations helps to reduce undesirable effects
and to create the basis for high-quality requirements. Still we have not yet explained
what linguistic effects are and how they arise.

Linguistic effects

Every person perceives their environment differently. The totality of their perceptions
forms the person’s knowledge, which is further influenced by previous knowledge,
social shaping and accumulated experience.

As soon as people communicate their knowledge, transformation processes take
place. These processes depend on how the communicating parties assess their
situation and interlocutors. Which previous knowledge do they expected from the
other person, and how certain of an issue they are themselves? These transformation
processes can result in a loss or falsification of information.

However, transformational effects can be detected and resolved — but only if the
requirements engineer knows the possible types of transformational effects and
their consequences. This is where the SOPHIST framework of REgulations comes
into play. Essentially it is based on the meta-model of language and neurolinguistic
programming (NLP) [Bandler75] [Bandler94]. Bandler and Grinder distinguish
between three "types of transformation": deletion, generalization and distortion.



Eliciting Knowledge

DISTORTION is an indicator for
statements that distort or change

DELETION is an indicator for .
reality.

imcomplete information.

® 0O

GENERALIZATION is an indicator for
possibly incorrect generalizations.

Figure 3.1: Classification of linguistic effects

The SOPHIST Set of REgulations

Fortunately, people proceed in a rule-guided manner when formulating knowledge
in natural language. There are tells in written and spoken natural language state-
ments, that help recognizing transformation processes. The SOPHIST Set of
REgulations is based on these unconsciously applied rules and enables to find
ambiguous and contradictory statements in requirement specifications in a defined
and systematic way during system analysis.

Adding process details

It need to be checked if the relevant process details are already
sufficiently named in the requirement. Question the verb (or a
property word derived from a verb) that expresses the process using
the typical question words: When? Whom? Where? How often? etc.
Decide whether the missing information is essential for the implementation. If it is,
fill in the missing process details.

We have only provided one of a total of 17 rules to give an idea of these rules. It’s
not necessary to memorize all 17 rules at the beginning. One can pick out the two or
three rules that are most important to him, and listen for the corresponding signal
words. Then, if necessary, ask the right questions, to get the deleted information for
example.

More information about the usage of the REgulations can be found in the following
video:

H E N
www.sophist.de/bren/k3v1
u




Eliciting Knowledge

Signal
words

Verbs: save, display, delete, calculate, assemble ...

Adjective derived from a verb: saved file, shared document, configured
schedule ...

Adverb derived from a verb: transmit compressively, print system-controlled

Description

In order to describe a process umanbiguously in a requirement, it is necessary
that all information that is required for a complete explanation is available.
This concerns verbs, or adjectives and adverbs derived from a verb. If there are
inanswered questions about the process the missing piece of information must
be found and added to the requirement.

Specific questions need to be asked such as ,,By whom or what is the process
executed?”, ,How often is the process executed?”, ,How do you, as a user,
execute the process technically?”, ,\When, or under which constraints, is the
process executed?“.

Completing the specified process details can lead to time-consuming
reformulations of the requirement. Often, however, additional requirements
are revealed from the answers of those questions, or the requirements
engineer realizes, that the original requirement must refined and thus replaced
by several more detailed requirements.

Think also of aspects that are described by properties. They occur either as
adjectives or adverbs. In this case, ask questions that determine specific
information about the property.

Example

Original requirement: ,If the identity check is not correct, the smart home
system must display this.”

Still unclear: What is being displayed? To who is being displayed? When will
be displayed? How ling will be displayed? Etc.

Improved requirement: After the smart home system verifies the identity
entered by the user, and if the identity verification is not correct, the smart
home system shall display the error message ,, Access has been denied” to
the user for three seconds.

Tips & tricks

Process details are statements/information that concerns a verb/adjective/
adverb. They can be analyzed by questioning them, but don‘t necessarily need
to be redrafted. Not all process details always need to be included in every
requirement. Some process details are already set by a precondition of the
use case or are known with a previous requirement and then don‘t need to be
redrafted.




Deriving Good Requirements

4. Deriving Good Requirements

Once the requirements of the stakeholders (in the following referred to as original
requirements) have been gathered, requirements that are good enough to serve as a
basis for development and testing must be derived.

In our experience, a common problem with original requirements is that they
demand more than what the development object, the system, is capable of.
Therefore, during analyzing the original requirements special attention shall be paid
to the content that is derived for the system. In the following, we refer to these
derived requirements as system requirements.

After the system requirements have been
identified, there may be differences to the
original requirements. The reason is that the
requirements engineer

B interpreted the original requirements,
B made further stipulations,

B adjusted the requirements,

B added missing requirements.

These (and many other) reasons lead to the
necessity of having the generated system requirements being reviewed by the stake-
holders and of resolving possible discrepancies.

4.1 Activities for Analyzing Requirements

Using the activities presented here, one will generate many system requirements
that may have been missing. We assume that each requirement refines another
requirement. An exception to this is the most abstract level of requirements. These
requirementsstand nextto each otherand form the basis for the refined requirements.
The outcome is many trees (mathematically called a "forest"), where the roots are
formed by the most abstract requirements and the leaves are represented by the
most detailed requirements that are no longer refined.

In a use case-based approach, the roots of the requirement trees represent either

B use cases of the system or

B categories of non-functional requirements that cannot be assigned to functional
requirements.

An incomplete example is given in the following image.



Deriving Good Requirements

. . . i N
Requirements with their refinements by the example of use cases:
B UC: grant access a
B UC: unlock door automatically
®  detect wish for unlocking -
®  register movement é
®  check authorization
° record face
o compare face Non-functional requirements:
) compare 5 characteristics ] Security
) within 2 seconds ° authorization via face recognition /‘ /\
B UC: lock door automatically Y compares charcteristics
B performance
° check authorization within 2 seconds
G 74

Figure 4.1: Connection between requirements

Each of the activities briefly presented below creates new system requirements from
given requirements (original or already created system requirements), or modifies
the given requirements.

The first step is to separate requirements. If necessary one original requirement shall
be decomposed into several requirements in order to examine them separately in
the next steps.

The second step, extract necessary requirements, can help to make sure, that
separated requirements are actually pointed at the considered system. If this is
not the case, the part that matters for the system must be identified for further
consideration. These first two steps should be applied to all original requirements
to create a good starting point for further analysis and to be sure that all original
requirements are considered.

The next task is to abstract the given requirements until the top level requirements
(i.e. the roots of the trees) are found. In the process, new requirements may be
encountered. The existing requirements are to be placed into an abstraction/
refinement hierarchy. The top level will be completed in the step add missing
requirements, in which further requirements at a certain level can be defined.

The second last activity is to refine requirements and to decide which of the existing
nodes in the trees should be further refined.

At the end of the analysis, the found requirements can be improved and checked
regarding to their individual quality, e.g., to formulate them unambiguously.



Deriving Good Requirements

Separate Extract Abstract
requirements necessary requirements
requirements

Source
requirement

|n~!prove R_efine Add
requirements requirements missing
requirements

Figure 4.2: The analysis tasks in an overview

The structure created from the activities can become the foundation of the
requirements collection of both, natural language and model-based requirements.

There are various techniques that support the activities presented here. Different
guestions can be asked, that lead to the system requirements. For example, asking
“What’s the aim” of a requirement helps to find the more abstract requirements.
A structured inspection of given interfaces can help finding missing requirements.
In general, many activities are supported by the regulations of the SOPHIST Set of
REgulations (see paragraph 3.3 - "ldentifying linguistic effects - The SOPHIST Set of
REgulations").

In practice, while executing the individual activities, knowledge that goes beyond the
information in the original requirements is needed. In order to fill these knowledge
gaps, stakeholders or customers need to be asked. Alternatively assumptions can be
made, that need to be double-checked afterwards.

An exemplary application of the activities for analyzing requirements can be found in
the following video:

Please note that these activities need to be embedded into the RE process. Among
other things it has to be determined when to carry out the analysis for the different
parts of the original requirements. Furthermore, it is important to define termination
criteria for the individual activities. Otherwise more resources than needed may be
used into the analysis of the original requirements.



Deriving Good Requirements

4.2 Validating and Consolidating Requirements

After the requirements are derived from the original requirements, it is time to
ensure that they reach the defined quality criteria by validating and consolidating
them and that every stakeholder is happy with the requirements.

Validating requirements

Incorrect requirements impair the develop-
ment activities. The later a mistake is detected,
the more changes have to be made - in
architecture descriptions, in test artifacts or
maybe eveninthe source code. When validating
requirements, it is advisable to first define the
goals of the validation. Later on, the selection
of the respective validation techniques depends
on them. After preparing and performing the validation, the results can be
incorporated. Depending on the extent of the changes, a possible new validation
may be appropriate.

Define quality Choose validation “\Prepare and perform Incorporate
goals techniques the validation changes

Basically, it can be distinguished between automated validations that are performed
repeatedly and validations at specific milestones during the development.

Consolidating requirements

In the course of requirements engineering, especially during the validation of
requirements, discrepancies can occur at many points. These range from technical
misunderstandings to serious personal conflicts that cannot be resolved without any
additional help.

The conflicts that we mostly have to deal with in the RE process describe
incompatibilities of requirements that are based on conflicting perceptions or
competing goals of the stakeholders.

The requirements engineer's task is to identify these conflicts, analyze them, and
determine how the conflict can be resolved, together with the stakeholders involved.
After a conflict resolution, it is advisable to document the conflict as well as the
process of finding the solution, in order to be able to work out a solution for similar
conflicts with less effort.

. . : . D i
Identify conflict Analyze conflict Resolve conflict DELEE ?Onﬂ'Ct
resolution



Deriving Good Requirements

For each of these steps, there are a couple of techniques to choose from, that are
based on the constraints of the project (e.g., availability of stakeholders to resolve
the conflict). For conflict resolution, there are techniques ranging from building
compromise to the pull rank. Especially in the step of identifying conflicts between
requirements, a structured and comprehensible documentation of the requirements
will help.



SOPHIST

Competence and expertise

par excellence

Method mventor
= =mm Speaker

Author of books

- REQUIR-EMENTS Systemanalyse
entwickiung ENGINEERING we | \orokt
T -MANAGEMENT




Consultant Coach

@ —

' Trainer

——

We offer you:

We support you competently, energetically and expen-
diently both in adapation of your development processes
and methods and in the implementation of your project.

Our customers include many world-renowned companies.
- The large number of positive opinions and project reports
from our satisfied customers speaks for itself.

Take a look at www.sophist.de/referenzen P

Our services: -
m |dentify, exploit and introduce potential for improvement

taking into account the constraints in your oragnization

m Elicit, analyze, convey and document requirements and
architectures appropiately

m  Onthe way in simple software applications up to complex
systems

m  Work in agile and adapted way

All of this and many other topics from the world of requirements
and systems engineering we offer you in the form of consulting,
,I coaching, training and lectures.

/
/ How can we help you?

-

L

We would be happy to elaborate a concept with you
to provide you with the best possible support for
your project.

Contact us without obligation:
+49 (0) 91140900-0
heureka@sophist.de



Documenting and Imparting
Requirements

5. Documenting and Imparting
Requirements

Whether with or without a specification, model-based or natural language - whether
as a narrative, backlog, or specification; in order to impart the requirements to
others well, the imparting must be planned and various influencing factors must be
considered to select the appropriate technique. After all, we usually don’t elicit and
analyze requirements for ourselves, but for other roles involved in the development
process, such as development, test, system architecture, and many more.

Accordingly, an important task for requirements engineers is to impart the
requirements to other people in a way that they understand them and no
misunderstandings or misinterpretations occur. The requirements engineer should
think about how he wants the imparting to take place. For example, he can write
down (document) all the requirements and give them to the recipients to read. Or he
can talk about the requirements up to a joint playful experience of the requirements.
Our project experience shows that successful imparting usually consists of a well
thought-out combination of different techniques.

5.1 Imparting Requirements without
Documentation

Requirementsanduserstories canalsobe communicated without classicrequirements
documentation. Especially in the agile world, we made positive experiences with
techniques that involve less documentation and more communication (e.g., user
stories or storytelling). However, requirements documentation based on models or
natural language and the options presented below are not mutually exclusive. In fact,
one can certainly combine them to take advantage of the strengths of both options.

Storytelling

Who enjoys listening to a monotone lecture if they could enjoy the same content
wrapped up in a good story? People have always been fascinated by stories. Since the
beginning of time, knowledge has been passed on through stories. It’s not surprising
that storytelling is also used in requirements engineering. We use different types of
stories.

B Background stories tell something about the context and the usage of the
system - they give important background information.
B Personality stories introduce a persona and make them tangible.

B Conviction stories transport the initial situation at the very beginning of
requirements engineering and motivate why the system is needed.

B Explanation stories clarify individual processes and behaviors of the system.
From our experience, they are used most frequently in RE.



Documenting and Imparting
Requirements

User Story and Story Mapping

User stories describe desired functionalities resp. properties of a system from the
perspective of the person who needs the functionality or property. In the agile world,
the imparting of requirements by means of user stories is widespread. In addition
to documenting the content of the user story (who wants what from the system for
which purpose), a user story represents a communication promise.

Mediation with user stories roughly works according to the following pattern:

B Formulating the requirements in user stories.

B Discussion with the people receiving the requirements, based on the formulated
user story

B Joint agreement on the contents of the user story

Me
asd
USeY...

Figure 5.1: 3-C-Model according to Ron Jeffries

User stories generally describe only very small functionalities, so there will be a large
number of user stories over the course of a development project. In order to maintain
an overview, they can be related to each other with the help of a story mapping.

Prototypes

Prototypes can be used in many areas of system development; they are suitable
for eliciting requirements, for validating them, but above all for imparting them. As
diverse as their possible applications are, so are their characteristics. We've made
good experiences with the following prototypes in system developments:

B Wireframe: a schematic representation of the elements of a user interface.

B Functional prototype: A preliminary implementation of a function regardless of
e.g., the performance or presentation of results.

B Mock-up of the user interface: An extension of the wireframes; the design of the
user interface is already recognizable.



Documenting and Imparting
Requirements

Pictures

A picture is worth a thousand words... but are a thousand pieces of information
relevant for imparting ones knowledge? This is exactly the dilemma one will face
when using images to impart knowledge. Many people find it easier to capture ideas
and wishes in a picture than to just explain them by using language. Therefore, a
picture can be of great help in storytelling.
Moreover, research has shown that pictures
can be remembered much better [Wolfe10],
which is crucial for imparting knowledge. Of
course, the use of pictures is limited and not
every aspect can be expressed well in a
picture. But especially when it comes to
spatial arrangements, impressions, i.e. the
parts of a system that can be seen and
represented  visually,  pictures  help
enormously in imparting knowledge.

Talking about image in this context, we mean an informal visual representation,
e.g., a drawing of the house on paper to discuss the positioning of the surveillance
cameras. It’s not a formal or semiformal representation like an architectural model
or a sequence of events noted in a UML diagram.

Create joint artifacts

Another way to impart requirements is to jointly create additional artifacts. From our
experience, the joint creation of test cases for the requirements is particularly
suitable. However, it is also imaginable that other artifacts, like architecture or design
documents or operating instructions, are created jointly. Especially if one does
systems engineering, it might be useful to create architecture documents (see para-
graph 9 - "Systems engineering"). It helps to pick artifacts that have to be created
anyway to avoid generating further effort and to be able to use the created artifacts
in subsequent process steps.

5.2 Imparting Requirements with
Documentation MAOTER
Let’s talk about the most common imparting technique now: documentation.
Documentation can be found in a classic commissioning relationship in the form
of a specification sheet or requirements specification, but also for communication

between departments within an organization. Furthermore, this technique becomes
almost inevitable when one wants to make requirements available for reuse.

The representations: Natural language vs. model-based requirements

When talking about documentation, we cannot avoid the terms “natural language”
and “model-based”. Both types of documentation have advantages and disadvantages.



Documenting and Imparting
Requirements

Natural language documentation is distinctive in that no learning of notation is
necessary, since everybody understands language. Natural language is also suitable
for documenting all types of requirements. However, care must be taken, because
natural language is often ambiguous or misleading.

On the other hand, model-based requirements documentation is well suited
for looking at the system in isolation from different perspectives, e.g., the purely
structural view of the terminology/ information/ data to be processed, the functional
view of workflows/ system processes, or the state-oriented behavioral perspective
that illuminates system reactions to events, among other things.

Due to the compact presentation, which is unambiguously understandable for the
trained reader, misunderstandings can be avoided. However, the disadvantages are
obvious - the corresponding notation must first be learned and understood by all
participants.

Use-Cases System processes States

c -
S ., Grant access Outside door
S € ] closed
@ qE" Action 1 do / Grant access
S

Q
Q =
[

o
g9 ® Unlock
2 door open

Information model Glossary

Inthe smart home

Fl

unlock

grant

Terms & information
structures

- attribute

access

Figure 5.2: Views on requirements

N B HE I EEEEEESR
@ www.sophist. de/blen/k5a1
‘4 # HE E E E HEEEEEEBHE

One type of diagram for its own is usually not sufficient for representing complex
issues in models. Besides, models are not universally applicable. Acommon approach
is to combine model-based and natural language requirements to take advantage of
both forms.



Documenting and Imparting
Requirements

A prime candidate for natural language documentation - the
Functional MASTER

From the area of the natural language documentation we offer an approach that
in our opinion is easy to use. The SOPHIST sentence template, also called the
SOPHIST requirements template, is a blueprint that defines the structure of a single
requirements sentence. The structure of individual requirements is standardized.
So it’s possible to determine at first glance, whether important components of
a requirement are missing. Especially when specifying in a foreign language, a
predefined requirements framework can help to overcome uncertainties.

Using the requirements template is easy to learn and reduces unwanted linguistic
effects since the syntax for writing a requirement is already provided. Compared to
arbitrarily formulated prose requirements, the quality of the requirements increases
significantly after the first application. The SOPHIST requirements template for
functional requirements has become an integral part of most requirements
engineering processes in companies and is referred to by us as the Functional MASTER.
Based on our practical experiences, we have further developed the concept and
defined other templates in order to cover non-functional requirements and
conditions with our template. More information about our new templates can be
found in our book Requirements Engineering and Management [Rupp20].

Step 1: Identify subject Step 5: Identify object
matter

Baiect SHOULD PROVIDE <whom?| what?> <verb> <object>
matter> WITH THE ABILITY TO
Step 3: Identify /
functionality

. WILL BE ABLE TO
Step 2: Define import-
ance N—

o)
Our project experience has shown that the first steps in dealing with the templates
are not so easy in the beginning. Writing the first requirements according to the
template feels clumsy and more effort is required at first. However, the effort mostly
comes from the fact that one has to reflect on knowledge elements that end up
in the sentence due to the template, which therefore improves the requirement
immediately. Moreover, in the beginning one will think about which template to
choose: Is the requirement for a system that is supposed to do something on its
own? Is the user or an interface involved? If one manages to get through the first few
hours, he will find that templates are an effective way to write good requirements
quickly and professionally. We would be happy to support with training, workshops
or through consulting.

Step 4: Define type of functionality
N—

Figure 5.3: Functional MASTeR

HE B I EEEEEEEESR
www.sophist.de/bren/ksa2




Requirements Management

6. Requirements Management

Requirements managementincludes all the processes that support the main activities
of RE and the further use of requirements. In the following chapter, we will give an
insight into the world of requirements management (RM) and practical tips regarding
the question, to which extent one should perform which activities of requirements
engineering.

Why dealing with managing requirements at all?

Good
requirements

management ...

Figure 6.1: Good requirements management pays off

We specified the abstract reasons from figure 6.1 with two prominent representatives.

Requirements are changing

As requirements change frequently over the course of the system development,
it is necessary to navigate well within collected requirements. Changes may range
from small repairs, such as spelling errors, to complex changes that include extensive
revisions of entire sections of a specification. A RE concept should contain a structured
approach on how to deal with so-called “change requests”.

Requirements are reused

It should always be kept in mind that requirements are never collected for their
own sake, but that stakeholders, such as developers or testers, have to able to read,
understand and work with them. Requirements engineers must therefore ensure
that comprehensive information is presented clearly in the requirements collection
(requirements specification and/or product backlog).



Requirements Management

6.1 How much Requirements Management Makes
Sense?

The importance of requirements management within the development process is
directly related to the parameters of the project. There is no formula that describes
how much resources should be spent for RM, but the following factors can help to
estimate the amount of RM needed:

number/ scope of requirements and further information

expected lifespan of the product

frequency of the rate of change

number of people involved in the process

availability of the stakeholders

quality demand on the system

degree of reuse

complexity/ complicatedness of the development process
heterogeneity of stakeholder opinions

number of releases to be developed

existing tool environment for requirements management

approach used in the project
external requirements (norms, certification process or corporate guidelines)

From our experience, we recommend not to fall into a lethargy of thinking that “It
has always been this way” when analyzing external conditions. Try to find out these
two things instead:

B Which constraints are unchangeable and which ones can be influenced?
B How resp. by what can external conditions be modified?

In practice, it has been shown that even minor changes to existing constraints can
cause a big alleviation or improvement. In the following chapter, we will take a closer
look at some of the most important aspects of RM.



Requirements Management

6.2 Versioning and Baselines

As requirements change over the course of a project, introducing the versioning of
requirements has proven to be a useful tool in order to understand at a subsequent
date, how requirements have changed over time.

When creating a new version of a requirement, the first step is to copy the
requirement. The old requirement is kept and linked to the new version. The new
version is given a new version number. The old requirement is entered into the
history of the requirements specification. The new version can now be edited. This
procedure ensures that no information gets lost. Many tools developed specifically
for RM support versioning. This is one of the reasons for using a professional RM tool.

Moreover, versioning also helps to plan releases and changes of requirements.
In doing so, a specific state of the requirements is determined on which one can
draw on at any later given point. This selection of requirements is referred to as
“configuration”. If a configuration includes all the requirements for a release, we
speak of a “baseline” instead of a “configuration”. Each configuration and baseline
can be given a unique name for identification purposes.

In order to find out which requirements are part of a configuration or a baseline, a
traceability concept is required.



Requirements Management

6.3 Traceability

Definition of traceability according to SOPHIST [RUPP20]:

Traceability is the ability to track the connections and dependencies between
information that arises at any time during the analysis, development up to the
disposal or replacement of a system.

With traceability according to the definition above, it for example can be found
out, when a requirement is changed, which other requirements are affected, which
requirements are necessary for the development of a system function or which test
cases cover these requirements.

Traceability creates a basis for effective and high quality requirements management,
because it supports the following aspects:

B \Verifiability: Have all the goals, agreed requirements, test cases etc. been
implemented? Were all specifications met?

B Identification of dependencies: Which effects does a change of a requirement
have on other development artifacts?

B Reuse: Which artifacts from the development process are used in other projects?

B Comprehensibility and overview: How has the system developed and changed?
Which expenses must be expected for troubleshooting?

A traceability model can define which traceability is needed, who maintains it at
what time and in what way and how these traces are supposed to be used over
the course of a project and beyond. Our experience has shown that it should not
be underestimated, how much effort it can take to create and maintain traceability
regarding the managed information.



Requirements Management

6.4 Change and Release Management

Frequent and complex changes to systems need an elaborate procedure in order
to cover all processes - be it by collecting change requests, planning of releases or
rolling out implemented changes. Suitable methods can be assigned to the discipline
change and release management.

The following figure gives a context overview

Commissioning

organization

Legislative institution

Portfolio/product

management
Change Release .
) Operation
Innovation management management management

Problem management

Development, testing,
logistics, production,

operation, maintenance,
quality assurance

Figure 6.2: Change and release management

On the left side, the potential sources for changes can be seen - explanations to
each mentioned source in paragraph 2 - “What is Requirements Engineering” can be
found. On the right side, the process of a change can be seen. The process goes from
change management, over the implementation, to the transfer of the change, into
the operation of the system.

Change management

Change management controls the life cycle of all changes with the aim to introduce
the changes into the development process in a controlled way. The tasks of change
management include

B performing impact analyses,
assessing changes,
prioritizing changes,
planning changes,

and communicating the acceptance or
refusal of changes.




Requirements Management

Release management

As soon as planning, termination and controlling of builds and tests as well as the
integration into existing systems are pending, release management comes into play.
The release manger has a special role here, controlling that all deadlines are met.

Once the implementation is complete, the new system must be delivered to the
customer. The content of the release can vary a lot - for example, a new product
version may be created when many innovations have been implemented, or a recall
may be started when a critical bug was fixed. It’s important to provide a service hot-
line, training staff, manual authors and all other affected roles with the necessary
information in time, e.g., in the form of release notes, to prepare them for the
changes.



Establishment of an Improved
Requirements Engineering

7. Establishment of an Improved
Requirements Engineering

Requirements engineering is part of every development project, but not always in
an effective, efficient and satisfying way for everybody involved. If the requirements
engineering of a company shall be improved, this is the right place to be. Changes
may concern the process, the methods and also the tooling or all at once. Regardless
of whether one wants to go from a waterfall-like to an agile requirements engineering
or applies the last optimizations to their requirements engineering, the change
should always be systematically.

7.1 Changes within an Organization

The British social philosopher Herbert Spencer created the expression “survival of
the fittest”. This idea doesn’t only apply to human, but also to companies. Markets
change, just as the demands of customers and partners do. Those who fail to keep
pace with technological progress will soon lag behind the competition. Especially
topics like digitalization can influence markets dramatically. That’s why systems and
development processes need to adapt by considering new insights and options. This
adaption also influences the requirements engineering.

However, adaptation also means
questioning the existing and change
always means letting go of something
familiar and of the sense of security
offered by the known. Consequently,
change is always accompanied by fear,
concern or doubt.

.
\
R

The need for safety is rooted deeply
in human beings. New things that are
going to replace the familiar are often
perceived as a threat. Our experience
shows that especially the fear of failure,
the hesitation to learn something new
and to make mistakes in the process is
omnipresent. For a successful establishment, in the beginning an awareness of the
problem is necessary, a need for action and a motivation to change. If all of this exists,
it is time to start looking for an improvement idea and, once it has been tested, to
establish it.




Establishment of an Improved
Requirements Engineering

7.2 The Establishment is a Project!

Such improvements must be established carefully into an organization. It should be
put as much effort into the establishment as into a development project. It doesn’t
matter if a new procedure, methods or a new tool is to be established not even if
they have to be invented and tested first.

We have seen it over and over again; during the analyzing, people are surprised of
the guidelines that limit the solution space. Not only are unknown guidelines
identified, just as often guidelines are considered that actually don’t exist.

Solution space

Finding and
RE methods m ﬂ introduction process
RE tool M m RE process

Figure 7.1: Guidelines of a RE implementation

7.3 An Agile Design of Changes

There are different approaches for improving requirements engineering. Our
approach, which we often use in our projects and which is suitable for many
situations, is based on agile ideas.

We made the experience that our customers' wishes are constantly changing. We
can successfully meet this dynamic with agility.

Some of these changes are not content-related, but concern guidelines or new
technologies and lead to a different way of working.

However, we can also deal with this dynamic by adapting our agilely developed
approach.



-

Online/Remote Trainings

Your SOPHIST training - almost anywhere in the world

Online/Remote trainings are specifically designed to deliver knowledge
and skills via the internet. The unique and carefully thought-out elabora-
tion - in terms of content and didactics - as well as a maximum number of
participants of 12 persons ensures a perfect online knowledge transfer.

For Individuals and smaller teams, our ,open trainings” are perfect. And

due to the modular structure, the combination of different focal points
and the possibility of individual adaption, online/remote trainings are also
perfectly suited for internal company trainings of complete teams.

Of course our well-known CPRE certification training courses are also
available in this format.

... N0 matter where



Establishment of an Improved
Requirements Engineering

To make this approach work, we start with a few basic assumptions that must lie
within the guidelines that have been set.

B The team itself must have authority over its working methods, i.e. it must be
allowed to make independent decisions within the set limits.

B Everybody needs to know, aim of trying out new or modified methods is to
investigate them and to learn something - and that results may be discarded.

Our experience taught us, that in order to carry out such an approach, there are two
aspects that increase the probability of success enormously. First, only teams shall be
considered for team selection that above all have a need for action and not only
signal willingness for change. Second, there should be at least one "Elvis" in the
team, because no one has more imitators; everyone wants to be like him. The success
of imitational learning, acceptance and trust in advance facilitates the later spread
and introduction of the new procedure. In the following, we will explain the individual
steps of the process presented (see figure 7.2).

First Things First
Refinement &
Planning

Multipliers, Guild, Best practices, Tipps and Tricks, Do‘s and Definition of done ...

Company

Figure 7.2: Overview over an agile procedure for changes

Inthe beginning, the current status is analyzed and a working hypothesis is developed.
The focus lies on the current working method of the team. The teams examine the
requirements engineering methods and tools and, above all, the friction losses that
exist within the team and to external partners, e.g., the stakeholders. The resulting
ideas for improvement are stored in an improvement backlog. After transferring
them to the improvement sprint backlog, the training for the method starts. The
team decides whether the entire team or only those participating in the experi-
ment are trained. While the method is being applied, the team gains experience
in applying the method under real working conditions. At this point the team can
and decide, whether they want to try out the innovation in one piece (workshop
character) or continuously. During this time, the participants receive any methodical
help they request. This can be a further training, a review of the results, coaching,
sparring partners etc. The best time to check with the team whether there is a need
for help and how the participants of the experiment are progressing is to ask them



Establishment of an Improved
Requirements Engineering

in the daily meeting. To evaluate the experience gained, the results are presented to
the stakeholders and their feedback is requested. The team sees how easy or how
hard it was to apply the method and it hears from the experimenters when they
share their learning experience. This allows the team to reflect in the retrospective
on the process and results. The measures derived from the retrospective fill the
improvement backlog again.

The team that has found an improvement can talk about it and their experiences to
other teams. By doing it, they take the rollout partially into their own hands.

If there is not only one team or topic to be improved, this agile approach can be
scaled with a usual framework such as SAFe [SAFe].

7.4 Work Packages of an Establishment

To ensure the success of implementations, it is worthwhile to plan and work out the
most important steps using the following concepts.

B Marketing concept: Plan on who shall be excited about the idea.

B Concept for imparting knowledge: Structure the systematic build-up of
knowledge.

B Piloting concept: Find the criteria for when and what will be tested by which
pilot project.

B Migration concept: Think through how to deal with the existing (e.g., existing
specifications).

What matters at all these concepts is that the execution of the measures is monitored
and metrics are used to measure their success. For example in case of a marketing
concept, it is worth defining the goal of how many people shall be reached with the
information, in advance. In regular intervals it shall be checked how many of the
targeted people have already been convinced of the new ideas. This is the only way
to know whether the executed measures have been successful.



Requirements Engineering and Agility

8. Requirements Engineering and Agility

The word “agility” is on everyone's lips these days and currently it is impossible to
imagine the area of system development without it. Therefore, we must ask ourselves
the question: What about requirements engineering in agile system developments?

First of all, we can clearly say from our experience, that requirements engineering is
also carried out in agile approaches. Many things are called differently and, above all,
are done at different times. However, in an agile context, there are often additional
tasks for requirements engineers that are usually handled by other roles in classic
system developments.

There are various agile approaches or frameworks. The best-known framework is
scrum. Typical for all agile approaches is that the product is developed step by step.
In many iterations, small increments of the product are developed, which results in
a big picture. After each iteration there is supposed to be an outcome, which can be
shown to the stakeholders so they can give feedback. Obviously the feedback given
must be integrated into the requirements of future iterations.

At the beginning it is better not to think too much about very detailed requirements
that will be implemented at a later date. There will be several changes due to
feedbacks. That’s why in agile contexts we go with the approach of just-in-time
requirements engineering. This means we work with the requirements that are
about to be realized.

This creates new challenges. For example, there are more dependencies between
requirements to think about. It shall be avoided to demand something in one
iteration that conflicts with requirements from previous iterations. To deal with this
challenge, we pay attention to a clever splitting of the requirements in order to have
no dependencies if possible (keyword “independent” from the INVEST principle, see
paragraph 2.2 - "Quality of requirements"). We also use techniques from the classical
world of requirements (e.g., models) in order to make the connections visible.

Roles of a requirements engineer in an agile context

In an agile environment, the term requirements engineer often doesn’t exist.
However, the job still has to be done. Even agile development cannot go without
eliciting the wishes of the stakeholders. Their knowledge needs to be processed and
imparted for the development team. In agility, it’s usually the job of the product
owner. However, the product owner can also be supported by other specialists, who
are called proxy product owners, business analysts or sometimes even requirements
engineers. Obviously product owners have more tasks than the typical requirements
engineering activities. They also handle issues like release plannings, prioritizations,
and decisions about the scope of the product to be built. These are typically not
classic requirements engineering tasks. So obviously, there is some additional work
for requirements engineers in agile contexts.



Requirements-
1 Engineering

Die SOFHISTen

»Clever & kompakt«

Die RE-F“‘JEI
von SOPHIST

WISSE N
\ for f ree

S —

Brochures

Rt

_—

-\;___ :

N Sy 5t eim s

el i

Die S0Py e SOPHISTen

»Short g clevere » Anforderungen und

Architekturen fiir

The SOPHIST

komplexe Systeme«

Oie SOPHISTen
3
Werbesserungspotenzial
4 .
ffektiv heben Fairements.

Engineering

www.sophist.de/wissen-for-free




Requirements Engineering and Agility

Requirements engineering activities in agile contexts

In this brochure, we have already discussed the main activities of requirements
engineering. These are eliciting knowledge, deriving good requirements, imparting
requirements, and managing requirements. We will take a closer look to requirements
management later and will start with the first three main activities.

Eliciting knowledge: The equivalent in the agile world can be found easily. For
requirements engineers or product owners the work isn’t any different to the one in
the classic world. Product owners also think about goals, stakeholders, or system
context boundaries.

However, agility brings new, great
techniques (such as vision box, news from
the future), which can also be used in
classical development projects. Product
owners, however often face one special
challenge. They can define a system and
context boundary, but the boundaries
will be very "unstable" over a long period
of time, because the development team
deals with the requirements only step by
step.

Deriving Good Requirements: In agile projects good requirements need to be
derived from stakeholder statements, too. However, the requirements often look
different because of different working methods. Usually the requirements are not
written down in every detail.

Instead, we describe the requirements in a more rudimentary way in order to
talk about them. Rough user stories are more likely to be created. We use quality
criteria to tell how good requirements are. In agile contexts we use different criteria
than in classical ones. We often take the INVEST principle as the quality goal of our
requirements (see paragraph 2.2 - "Quality of Requirements").

Especially in this activity, cutting of user stories is an important topic. Success often
depends a lot on proper cutting. There are a several cutting techniques and criteria
that have worked well for us.

Imparting Requirements: In this main activity there are many differences between
agile and non-agile development. In the agile world, requirements are imparted
primarily through conversations in refinement meetings. So there are no longer
the typical documents in which one can read the requirements. Instead there is a
collection of requirements in a product backlog. These requirements can be described
in different ways and communicated using special techniques. There are better ways
to communicate them than a disorganized discussion. We often use techniques such
as storytelling, creating test cases in a group, or videos to impart the requirements.



Requirements Engineering and Agility

The requirements collection in agile contexts

Inclassicapproachesusuallyarequirementsspecificationiscreated(e.g.,aspecification
sheet). At the end of the requirements analysis, this contains all requirements in the
desired quality and in the required level of refinement. In agile contexts, we use
a product backlog for the collected requirements. All the requirements known at
a certain time can be found there. But - not all requirements for a product can be
found there. And also not all requirements fulfill the assigned quality criteria and
the required level of refinement. That only applies to the requirements (or better
product backlog items), which are realized in a soon iteration. In addition to these
characteristics, there is one more major difference to a requirements specification.

While the requirements in a requirements specification are organized and sorted by
technical correlations, in a product backlog they are sorted by priority. This means
that the requirements at the top of the product backlog currently have the highest
priority. It is quite possible that these do not have any technical correlations.

Detailed High

Product Backlog item

Priority

Level of refinement

Less detailed Low

Figure 8.1: The product backlog

This makes the work on the content of the product backlog items more difficult.
However, the problem can be handled by using various techniques. We successfully
use different types of story maps or work with other forms of documentation in
addition to the product backlog. There are many options for making requirements
engineering profitable in the agile world.



Systems Engineering

9. Systems Engineering

Within a systems engineering approach an
organized requirements engineering becomes
decisively more important. Not only because
the system analysis at system level lays the
foundation for the overall development, but
also because working with requirements is
reflected at all levels of the considered system.

Before we present these statements in more detail, there are some key terms that
relate to systems engineering to define.

9.1 Definition and Purpose

The first definition addresses the term systems engineering.

Definition systems engineering according to INCOSE
[INCOSE=20]:

Systens engineering is an interdisciplinary approach and mean to realize
successful systems. It focuses on the definition of customer needs and required
functionality early in the development cycle. As well as on the documentation of
requirements, subsequent design synthesis and system verification considering
the complete problem.

Let's take a closer look at a few terms in this definition.

The "complete problem" refers to the consideration of the entire life cycle of the
system. Therefore, we don’t only consider requirements that address the use of the
system. From the very beginning of development the needs of production, trans-
portation, storage, and installation all the way to the disposal of the system must be
included.

Obviously another central term in the definition is the system.

Definition system according to SOPHIST [RUPP20]:

A system consists of several parts. The visible behavior and properties result from
the interaction of these parts.

Another important activity of system engineering is also derived from this: The
decomposition of the system into its components. In the following, we will refer to
this as "system architecture", in which requirements will play a role again.



Systems Engineering

Many of the systems we encounter in our projects have two other characteristics:

Because of their complexity their decomposition is considered over several
levels. A part of the system is considered as a subsystem and again decomposed
into its parts by another architectural step.

The components of the system come from different subsections, such as soft-
ware, electronics, mechanics, etc.

As a result the development of the system (or a part of it) is embedded into a larger
system. Thus, the requirements for a system at any level of decomposition come
from the system architecture of the system level above.

There is one last term to look at from the definition above. System engineering

is supposed to deliver a “successful” system. For us, a system is successful if the
following goals have been reached:

B The projectis "in time & budget", which means that the estimations for develop-

ment expenses and development time were met.

The estimated production costs have been met as well as the quality in the
production of the system can be guaranteed.

The system possesses the required properties. These may differ from the initial

stakeholder requirements because, among other things, the system above may
change.

The first point is addressed in the figure below. There, the development time and the

development expense are shown with and without the use of systems engineering
methods.

Risk

Risk

A

Traditipnal System Development

System p
AS:?;;?S Arcr:/i - K Realization of Components

A

T ~—

Systems Engineering-based Development

Time
Figure 9.1.: Costs and risks before and after introducing systems engineering



Systems Engineering

By putting more effort into the system analysis, it is probable to overall save time and
thus money while maintaining the same quality. The risk is minimized early and not
only during the realization phase.

9.2 Embedding of Requirements Engineering

Figure 9.1 shows that in an organized system development, a high quality system
analysis should be performed. As indicated in the previous chapter, a system may
consist of several subsystems for which we suggest a similar procedure.

This idea is best represented in an illustration.

e Customer
requirements

NACIEREINSS System

specification ’
requirements

e Contractual
documents

High-level subsystem

. System architecture
QUASLES requirements

Subsystem
requirements

Subsystem analysis

Subsystem
architecture

High-level component
requirements

Component analysis

Figure 9.2: Iteration of analysis and architecture on several levels

Component
requirements

From the input artifacts the system analysis generates the system requirements to
be developed. The system requirements are the input for a system architecture step
including two important sub steps for this context:

B The subsystems of the system are identified.
B Requirements for the subsystems are derived from the system requirements.

The requirements for a subsystem show how the subsystem is involved in the
realization of the system requirements. So the high-level requirements can be
considered as requirements of a specification sheet for the subsystem.

When realizing the subsystem, the first thing to do, is to analyze the requirements
addressed to the subsystem in order to obtain resilient subsystem requirements.



Systems Engineering

In a subsystem architecture they can then be distributed to the respective
components.

There are some special cases that make an exception but in general this sequence of
analysis and architecture steps continues downwards until

B a component has been found that is developed outside of the responsible
system organization unit (e.g., by a supplier) and/or

B a component has been found that can be assigned completely to a domain
(mechanics, software ...).

This procedure ensures a complete consideration of all requirements at the different
system levels.

Many of the approaches, methods and techniques we presented so far, can be used
at any system level. However, there are some other techniques for the development
of complex, technical systems, which for example follow from laws and standards.

There is the FMEA (Failure Mode and Effects Analysis [Werdich12]) to find
weaknesses in the realization. Requirements are derived from the found risks and
will be incorporated into the development at the considered system level.

A FuSa (Functional Safety, [ISO 26262]) can give new input to the analysis process on
any system analysis with a HaRA (Hazard and Risk Analysis) and a functional and a
technical safety concept.

Especially in safety-critical areas, there is more that an analysis process. This affects,
for example, the traceability of the requirements to the inputs, the realization and
the tests and checks that must be performed for the requirements.

For defining a requirements engineering procedure for systems like this, the following
drivers result. If possible, all of them should be fulfilled;

B Procedural standards and norms that partly complement and contradict each
other

B Quality of requirements for further development or assignments adapted to the
needs of a supplier
B Time and effort, given by the project

These drivers, together with the "cautious" change that is motivated in paragraph
7, don’t make it easy to define the appropriate measures for an upcoming systems
engineering project. We’ve made the experience that the point of view from an
external expert can help with the methods and gives assurance for the next steps.



Requirements Engineering
for Smart Ecosystems

10. Requirements Engineering for Smart
Ecosystems and as a Driver of Digital
Transformation

Prof. Dr. Key Pousttchi from the Chair of Business Informatics and Digitalization at the
University of Potsdam defines digital transformation as follows:

Definition digital transformation according to Pousttchi
[Pousttchii7]:

The term digital transformation describes significant changes in everyday life, the
economy and society due to use of digital technologies and techniques as well as
their effects.

The effects are far reaching. They affect almost all areas of our daily lives. Business
models and value chains are changing drastically. Communication media and thus our
way of communication are changing. Ultimately, this changes the work environment
as well as our lifestyles. These new systems, but also the newly affected stakeholders,
have a significant impact on the working environment of requirements engineers.

The example of the smart home system that is used in this brochure is a smart
ecosystem. Many individual systems (video surveillance, heating, blinds control,
access control, etc.) communicate and interact with each other. The smart home
system itself provides the communication platform for its containing systems. These
ecosystems can be randomly scaled. The smart home system can also be seen as a
component of a higher-level ecosystem, a so-called “Smart Rural Area”. Systems like
that are usually not developed by one company, but are created due to the inter-
action of different systems in the same context or surroundings. The differentiating
factor between “normal” and smart ecosystems is that in smart systems, additional
systems can be added to or removed from the ecosystem at any time.

Impact of smart ecosystems on requirements engineering

A special challenge, which we had to deal with in a lot of our projects, is setting
the system and context boundaries for a system within a smart ecosystem. The
difficulties are that there are more potential interaction partners and thus interfaces.
At the time of development and implementation the interacting systems cannot yet
be determined unambiguously and completely.

This problem is not entirely new. The challenge also exists in service-oriented systems.
The keyword is: interface contracts or quality-of-service agreements or service-level
agreements. They ensure that the retrieving system has a predefined (data) quality
and thus the right to use the service.

Another effect is that the systems within a smart ecosystem complement each other



Requirements Engineering
for Smart Ecosystems

and are capable of providing functions as a compound that the individual systems
cannot realize separately. One possible approach is not to limit oneself to the
own subject of observation, but to look at the bigger picture. This can be done by
analyzing the upper abstraction levels that are above the concrete subject matter.
When developing a control unit within a vehicle for example, it may be helpful to also
take a look at the entire vehicle in order to find dependencies and interaction of the
individual parts (see also paragraph 9 - "systems engineering"). We recommend that
the business process level is included in the analysis. In the process other possible
deployment scenarios or application possibilities for the considered system can be
identified.

Possible approaches for the analysis of smart ecosystems

One possible approach to improved requirements engineering in a smart ecosystem
is to embed the work with requirements into an agile development. The reasons
are that smart ecosystems are highly complex systems with many uncertainties at
the time of development. Also a large number of changes in circumstances and
constraints can occur within a very short time. However, it is possible to establish,
to live and to optimize an agile approach in a greater context. This is an exciting
challenge for the requirements engineer that requires a lot of experience.

Another approach is model-based systems engineering. Model-based systems
engineering is suitable for smart ecosystems, because it divides the amount
of information and data by decomposing the whole system and looking at the
different views of the considered system. By doing that the whole system becomes
understandable and developable.

Solid knowledge of requirements engineering and modeling is essential, as well as
experience in dealing with complex systems.

The use of artificial intelligence (Al) will influence requirements engineering, too.
The specification of an Al system differs slightly from a conventional system. The
significant difference is the subject of observation. In a classic system the focus
lies on the functionality, the system behavior and the technical realization. In an Al
system the focus is on the specification of the training process and its quality of the
data. This approach moves the complexity out of the specification into the Al system.
Only the goal and the criteria for productive use are specified without digging to
deep into the functionality.



Requirements Engineering
for Smart Ecosystems

Digital transformation in requirements engineering

For the elicitation of knowledge, a challenge
is that due to new technologies, knowledge is
available in many different places. Thus the
process of selecting sources for requirements
is increasingly gaining priority. We can highly
recommend two tools for the work with
stakeholders who are difficult or impossible to
access: personas and empathy maps. Besides,
new technologies increase the working
methods of a requirements engineer. For
eliciting requirements we recommend the use
of CrowdRE methods, living labs, design thinking
or other co-creation approaches. Therefore,
it’s pleasant to have at least some short term
help from experts with experience in these
techniques.

The business world is changing; mobile work is
spreading and becoming the norm. The spatial
separation makes it difficult to use elicitation
techniques that require the physical presence of the participants. Special tools for
virtual meetings can help, as well as using elicitation techniques that are not affected
by this problem. Due to digitalization, many manually executed processes are being
automated. Therefore enough time and effort should be invested into the business
process analysis to be able to adequately digitalize undocumented manual processes.

A ELB S

The digital transformation affects the main activity creating good requirements in a
way that assistance systems can support in creating good requirements. For example,
there are text recognition systems to alert quality deficiencies or image recognition
software that converts diagram sketches into syntactically correct diagrams.

The increasing digital communication affects the imparting of requirements. In
particular it will change the collaboration between the requirements engineer and
his stakeholders. In the past, product/sprint backlogs, roadmaps or Kanban boards
hung on walls with sticky notes. Nowadays, these artifacts are digitalized because not
everyone involved is on site. Meetings that are based on working with haptic objects
become more difficult to carry out. The use of virtual or augmented reality can help.

If the stakeholders are spread out and direct collaboration for improving
requirements is not possible, creative, tool-based ways of working will save the day.
Heavy weighted, extensive documents probably won’t stay this way much longer.
The change effort would be hardly manageable due to a regular and continuous
delivery and rapid technological progress - unless the models are managed by means
of professional systems engineering and a good tool. By now we often resort to
videos for documentation and imparting. This creates a new exciting REpresentation
in requirements engineering with a lot of potential.



Requirements Engineering
for Smart Ecosystems

In the management of requirements, change management is gaining relevance. The
whole society is confronted with more technologies and uses them actively. So the
requirements engineer should keep close contact to his stakeholders and expect a

whole lot of change requests.



Business Analysis

11. Business Analysis, Requirements
Engineering or Both?

In many companies there is no such role or job called requirements engineer.
Instead there are requirements manager, business consultant, business analyst,
etc. Depending on the company the difference between these job descriptions
are more or less specific. In literature, at least two terms are clearly distinguished:
requirements engineering and business analysis.

We have already explained the term requirements engineering in chapter 2. Business
analysis is regarding to the International Institute of Business Analysis (IIBA) defined
in the following way:

Definition business analysis according to the International
Institute of Business Analysis [IIBA]:

Business analysis is an activity of enabling change in an organization by defining
business needs and recommending solutions that give value to stakeholders.
[BABOK®v3]

This statement show an obvious similarity between business analysis and
requirements engineering: "defining business needs [...] that give value to the stake-
holders". That sounds a lot like requirements, doesn't it? l.e.
in short: requirements engineering is embedded in business
analysis. But what exactly does it mean?

Business analysis is a very broad discipline that may include
many individual activities. In principle, business analysts
need to understand a company's strategies, goals, business
processes, etc. and combine them with market requirements
to develop products/improvements that meet the company's
business goals. It can be divided into the following four
different areas.

Planning and controlling work steps

One of the most frequent activities we perform in business analysis is planning and
controlling all business analysis activities. In our experience often a simple PDCA
cycle is implemented. Planning (P) includes familiar things such as stakeholder ana-
lysis, setting up requirements management and planning the individual work steps.
After that the work steps are to be done (D) and the result is documented. Now it
can be checked (C) whether the steps have brought the desired result and whether
it was effective. Finally, if necessary, one will act (A) and derive adjustments to the
work steps in order to compensate for any possible deficits.



SOPHIST Self-productions

A different kind of knowledge carriers!

WISSEN
fo r fre e The SOPHIST UML-poster

sor Notationselemente der UML 2




Business Analysis

Creating a business case

In order to achieve improvement or develop a new product, the first step is to find
out what is required. Therefore, we identify potentials with our customers, derive
business requirements, collect alternative solutions and evaluate them. It can be
done the traditional way by means of feasibility studies, economic feasibility studies,
etc. However, our project experience shows that the use of agile techniques is rising
in this area: product canvas with minimum viable product (MVP), vision statements,
product box, etc., which are presented in the course of an elevator pitch.

Requirements engineering

Is it done? Has the management been convinced of the product idea/business case?
Then requirements engineering begins. Never mind if it’s a classical or agile process
model. Detailed information about the selected solution alternative needs to be
determined, requirements derived, documented, prioritized and imparted to the
development team.

The best way to do this can be found in our brochures, books, on our website or in
personal conversations.

Establishing developed solution

Finally, the most important part: to accompany the establishment of the solutions
into the targeted environment. Especially if new software has been developed to
optimize the business processes, or even if the solution replaces staff, proceeding
with special caution is recommended. It would be easy to just meet the technical
requirements for integrating software into the production environment but that’s
not enough. The greatest threat lies in the risk that the stakeholders will reject the
solution due to existential fear or the fear of change. The key lies in a well-planned,
organizational change process (see also paragraph 7 - "Establishment of an improved
requirements engineering") that engages all people affected/involved.

So, business analysis and requirements engineering are closely intertwined. If help is
needed, we are ready and happy to consult!



Videos within Requirements Engineering

12. Videos within Requirements Engineering

In the context of requirements
engineering  activities  many
requirements will be created
that should be documented
or imparted in different ways.
These collections of requirements
can get very complex. As a
result the connection between
the requirements can be lost
notwithstanding model-based
documentation techniques or
story maps are used.

Videos can help. Among other things they can show many small requirements and
their connection in a comprehensible way. Videos can also help in the elicitation
phase; the original problem or the context of the new system can be shown.

Thanks to modern technology it’s no problem to create and send such videos. There
are apps for smart devices to create and edit videos, which are cheap or free and
easy to use. Of course, the planning, the creation and the editing of the videos are
not completely free. However, the time and therefore costs spent are compensated
by fewer costs for imparting the requirements. Especially, if there are a lot of stake-
holders and consumers. To keep the cost of the videos as low as possible, we have
briefly summarized the most important thoughts and principles for their creation
and use.

The PILZ of the video

Before starting to film a video, it needs to be decided carefully which content and
purpose the video shall have. We have defined a structured way that we call PILZ
(German for mushroom). In PILZ, four different dimensions are addressed, which
determine significantly the content and the form of the video (the script).

B Phase (“Phase”): In which phase of the requirements engineering process
should the video be used. For example, should it support the elicitation or the
imparting of the requirements?

B Content (“Inhalt”): Shall the video impart a rather static or dynamic content?
E.g., the presentation of the entrance area of the house in which a part of the
new smart home system shall be embedded (static) or the currently typical
sequence when entering the house without the new system (dynamic).

B Solution reference (“Losungsbezug”): How much of a possible (subject-specific
or technical) solution shall be given? It is possible to show the entering of a PIN
code at a keypad (technical solution) or this action can be hidden behind an
inserted card with the label "Authentication" (solution-neutral).



Videos within Requirements Engineering

B Time reference (“Zeitbezug”): Does the video represent a target state or the
current state? In other words: Does the video show a goal in an abstract way, or
does it show the currently given state?

For the different characteristics in the four dimensions, we recommend actions
to support the creation of the script and thus ensure the quality of the video. For
example, to show a static content, it should be switched between an overview and
detail shots, showing the details for a certain amount of time without changing the
camera position. In [Rupp20] we have given the complete list of characteristics of the
dimensions including the respective recommended actions.

Embedding into a collection of requirements

Another part of our approach is to describe how videos can be linked to a collection
of requirements. Videos in requirements engineering usually have a user’s
perspective, so they can be homogeneously integrated into document structures
that use use cases as the top hierarchical level.

L]

I I 1.1 Use case 1 (Open door)

1.1.1 Main scenario
1.1.1.1 Recognize person
1.1.1.2 Verify person
1.1.1.3 Open door leaf
I 7

L 1.1.2 Alternative scenario - Door is blocked
- -

1.2 Use case 2 (Close door)
1.2.1 Main scenario

Scenario video

Use case video

e—

Figure 12.1: Levels of detail for videos

With this approach, it can be decided which content shall be presented at which
abstraction level in different videos. Figure 12.1 shows different videos at the use
case level, that visualize different parts of the possible sequences. These use case
videos can now also be cut together to visualize a higher-level sequence, so that
requirements collection can be extended easily at different abstraction levels.



Videos within Requirements Engineering

Shooting videos in a workshop

The creative act of creating videos requires an intensive analysis with the content
that shall be presented. In our experience, the creation of a video can be done very
well in a workshop. During the planning and actual shooting of the video, negative
aspects in a described process can be found. Details must be defined clearly, and
existing requirements must be double checked to see if they e.g., don’t already
contain (unintended) parts of a solution. When creating the script, the way of
working with the requirements is special. It helps, if several people are collaborating.
The actual shooting is always a group event that will be remembered for a long time
by all leading and supporting actors.

In addition to PILZ, we have some other tools ready to conduct video workshops,
e.g., storyboards and mood boards. More details can be found on our website at
www.sophist.de/re7/kapitel27.



RE for Product Lines and Families

13. Requirements Engineering for Product
Lines and Families

We as customers are lucky! We can always and everywhere choose from many alter-
natives - or even better - create our own individual product. To make this possible,
we are supported, for example by configurators. In many areas, the ideal is: the more
individual a product, the better.

However, a growing variety and individuality lead to complications in the product
development. In order reduce the development effort as much as possible; the ana-
lysis of reuse options and product similarities is important. The goal is to fulfill as
many different customer requirements as possible with the least possible develop-
ment effort. Nowadays most products aren’t new, but are developed further in
an evolutionary manner. AlImost nobody launches a single product, but usually a
product family or product line, in which the products differ more or less. In the spirit
of "shift left": The earlier this fact is taken into account in the development process,
the higher the savings potential in the entire development process — best, if already
considered in portfolio management when defining the product strategy.

The feature model

We assume that there are several products that are similar in terms of their properties
and functions, but also differ in some way. The properties or functions are called
characteristics or features. Later they can be used to select or distinguish between
variants. For documentation purposes, the feature model has proven to be a useful
notation.

...... > requires 6optional 6 mandatory

Figure 13.1: Feature model of smoke alarm



RE for Product Lines and Families

If the product is supposed to be described "as always", to each requirement the
matching feature from the feature model can be assigned. The features can be linked
to requirements or simply be seen as an attribute of the requirements used for the

mapping.

Detect danger Always

- Detect smoke particles Smoke particles

- Detect gas Gas

- Detect temperature Temperature

Signalize event Always

- Signal danger Always

- Signal event SHS event notification
Use voice connection Emergency Communication
Charge battery Chargeable battery
Establish connection to control center] SHS incident signalizing
Turn on system Always

Turn off system Always

Figure 13.2: Mapping requirement features

Based on the feature model and its rules, it is easy to determine different variants
and, of course, the minimum viable product (MVP) or a platform (which is common
to all products).

Obviously the goal is not only to reuse the requirements, but also other development
artifacts such as architecture, test cases or even test results, if possible.

Feature peak

Requirements peak

Architecture peak

Test peak

Figure 13.3: Peak Model



Conclusion

14. Conclusion

Requirements and user stories are the heart of successful system development.
They can decide over success and failure, as they are the precondition for contracts,
correct implementation and development, as well as tests and acceptance criteria.
This applies to agile development just as much as to classical development.

Requirements engineering is a demanding field of activities that opens up many
possibilities. For instance, professional requirements engineering increases the
chances for the success of projects in IT environments and others. An appropriate
analysis can ensure that

o the system to be developed is described appropriately to the procedure.
o the fulfillment of goals is ensured by the associated requirements or stories.
. only agreed and tested requirements that meet the goal, are implemented.

Even if the expenses for a requirements engineering that is adapted to the approach
seems high - a lot of money is saved if the development goes into the right direction
and match the customer's wishes right from the beginning. Requirements engineering
is worth its costs!

This brochure is supposed to give an impression of what belongs to the basic work of
a requirements engineer. Of course, we could only present a small part of a complex
job. There are more information in our publications, on our website and of course in
consulting conversations and trainings.

So if you want to learn from the pioneers, professionals and real practitioners,
SOPHIST is the right place for you. Equipped with years of experience in a variety of
contexts, we are happy to take care of you, your projects and your co-workers. We
are always in line with your needs, because our customers are the centre of all of
our activities. We have no standard approach. We adapt processes, techniques and
methods individually to your needs. Together we can work out the approach that
works best for you. As the ancient Greek Sophists said — To us the human being is the
measure of all things.

We are looking forward to getting in touch with you.
Yours, the SOPHISTs



Bibliography

Bibliography

[Babok®v3]

[Bandler75]

[Bandler94]

[CPRE20]

[Goodwin09]:

[INCOSE20]

[1SO026262]

[Pousttchil7]

[Rupp20]

[SAFe]

[Wake03]

[Werdich12]

[Wolfel0]

International Institute of Business analysis: BABOK®v3: Leit-
faden zum Business Analysis Body of Knowledge, 3™ Edition,
Wettenberg 2017

Bandler, R.; Grinder, J.: The Structure of Magic Il. Science and
Behaviour Books, Palo Alto/CA, 1975.

Bandler, R., Grinder, J.: Metasprache und Psychotherapie, Die
Struktur der Magie I. 8t Edition. Junfermann, Paderborn, 1994.

Pohl, K.; Rupp, C.: Basiswissen Requirements Engineering. Aus-
und Weiterbildung zum Certified Professional for Requirements
Engineering — Foundation Level nach IREB-Standard, 4" Edition,
Heidelberg, 2020.

Goodwin, K.: Designing For The Digital Age. 1% Edition, India-
napolis, 2009.

INCOSE: Guide to the Systems Engineering Body of
Knowledge. Introduction to Systems Engineering (2019),
https://www.sebokwiki.org/wiki/Introduction_to_Systems_
Engineering (as of 01/09/2020)

ISO-Norm 26262: Road vehicles. Functional safety, 2" Edition,
2018.

Pousttchi, K.; GITO: Digitale Transformation (2017),
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/
lexikon/technologien-methoden/Informatik--Grundlagen/
digitalisierung/digitale-transformation (as of 04/01/2020)

Rupp, Chris: Requirements-Engineering und —Management, Aus
der Praxis von klassisch bis agil. 7t" Edition. Hanser, Miinchen,
2020.

Scaled Agile Framework: Scaled Agile Framework (o. J.),
https://www.scaledagileframework.com/ (as of 04/01/2020)

Wake, B.: INVEST in Good Stories, and SMART Tasks (2003),
https://xp123.com/articles/invest-in-good-stories-and-smart-
tasks (as of 07/25/2019)

Martin Werdich: FMEA — Einfihrung und Moderation. 2"
Edition. Vieweg & Teubner 2012,

Wolfe, P.: Brain Matters Translating Research into Classroom
Practice. 2" Edition. Alexandria, 2010.


https://www.sebokwiki.org/wiki/Introduction_to_Systems_Engineering
https://www.sebokwiki.org/wiki/Introduction_to_Systems_Engineering
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon/technologien-methoden/Informatik--Grundlagen/digitalisierung/digitale-transformation
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon/technologien-methoden/Informatik--Grundlagen/digitalisierung/digitale-transformation
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon/technologien-methoden/Informatik--Grundlagen/digitalisierung/digitale-transformation
https://www.scaledagileframework.com/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks

70 Notes

I T T T T I T T TR I I I R I I I R I I I I



VA Notes

I T T T T I T T TR I I I R I I I R I I I I



The basics of Requirements Engineering

When developing a system - be it software or a building - the most important prerequisi-
te for success is that all those who are involved know exactly what is to be developed. And
this already beginns with the rough targets and ends with highly detailed instructions for the
implementation.

The work of requirements engineers deals precisely with this topic. Their job involves:

. elicitation,

. documentation,

. validation and consolidation, as well as
. management

of system requirements.

With this brochure, we want to give you an overview of the activities belonging to these roles
and, hence, what we, the SOPHIST‘s, have specialized in for now over 20 years.



	1.	Introduction and Motivation
	2.	What is Requirements Engineering?
	2.1 Classification of Requirements
	2.2 Quality of Requirements
	2.3 Sources of Requirements
	2.4 Main Activities of Requirements Engineering

	3.	Eliciting Knowledge
	3.1 Goals, Sources and System Context
	3.2 Elicitation of Requirements
	3.3 Identifying Linguistic Effects – The SOPHIST Set of REgulations

	4.	Deriving Good Requirements
	4.1 Activities for Analyzing Requirements
	4.2 Validating and Consolidating Requirements

	5.	Documenting and Imparting Requirements
	5.1 Imparting Requirements without Documentation
	5.2 Imparting Requirements with Documentation

	6.	Requirements Management
	6.1 How much Requirements Management Makes Sense?
	6.2 Versioning and Baselines
	6.3 Traceability
	6.4 Change and Release Management

	7.	Establishment of an Improved Requirements Engineering
	7.1 Changes within an Organization
	7.2 The Establishment is a Project!
	7.3 An Agile Design of Changes
	7.4 Work Packages of an Establishment

	8.	Requirements Engineering and Agility
	9.	Systems Engineering
	9.1 Definition and Purpose
	9.2 Embedding of Requirements Engineering

	10.	Requirements Engineering for Smart Ecosystems and as a Driver of Digital Transformation
	11.	Business Analysis, Requirements Engineering or Both?
	12.	Videos within Requirements Engineering
	13.	Requirements Engineering for Product Lines and Families
	14.	Conclusion

	Schaltfläche 1: 
	 Video 5: 
	 Video 6: 

	Schaltfläche 2: 
	Schaltfläche 3: 
	Schaltfläche 4: 


