SOPHIST g

A
n &
g £
ee

Q
£ ¢
Y ‘op
owm
O
Q
('

The SOPHISTs

The SOPHISTs SOPHIST GmbH
Vordere Cramergasse 13
90478 Nurnberg
Deutschland
www.sophist.de

¥ @ SOPHIST_GmbH
@SOPHIST.GmbH
/sophistgmbh
blog.sophist.de

18t edition 2022

Translated from German by Benedict Fryer, SOPHIST GmbH
Copy Editing & Production: David Nawzad, SOPHIST GmbH
Cover Design and Layout: Heike Baumgartner, Blro Hochweiss

Copyright: SOPHIST GmbH

This work is protected by copyright laws.

All rights, including translation, reprinting and reproduction of the book, or parts
thereof, are reserved. This work may not be reproduced, edited or copied in whole
or in part, by electronic means or otherwise (photocopy, microfilm or other media)
without the written consent of the SOPHIST GmbH.

It should be noted that all software and hardware names as well as brand and
product names of the respective companies are normally subject to the registered
trademarks andpatent protections.

While reasonable care has been exercised in the preparation of this brochure, the
author and the SOPHIST GmbH assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

AV &

SOPHIST .) —I
, Trainings Q/J,, UﬁArE

S = a\w
What'‘s new about it?“

All SOPHIST training courses are designed in accordance with the
latest knowledge. Among other things, our trainers follow the
principles of the “...from the Back of the Room“ method in order to
convey training content in a sustainable way.

An activating learning evironment - more movement, less text,
more interaction with the paricipants and surprising exercise con-
cepts - makes learning fun and efficient.

Your benefits? -‘

You benefit not only from the know- how of the met-
hod leaders, but also from a didactic implementation
that leaves its mark.

“0. ——

w»» . Curious now?

Contact us without obligation:
+49 (0) 911 40900-0

heureka@sophist.de /

' AGILITY

//ﬁ

Requirements

Engineering«

SOPHIST g

! Table of Contents

1. Introduction i 7
1.1 Whatis Requirements Engineering?iiiiiiininanann. 7
1.2 Whatis Agility? 9
1.3 REINAGIY « v oot e e e e e e e e 11

2. Goals/Vision, Stakeholder, Delimitation of the System 15
2.1 Goals/ViSiON. . oot 15
2.2 Stakeholder i e 16
2.3 System Context ...t e e e e 17

3. From Requirements tothe Product....................... 20

4. Eliciting Requirementst 23

5. Documentation of the Requirements 24
5.1 TheProductBacklog....... ... 24
5.2 From Product Backlog Items to User Stories. 26

6. Deriving Good Requirements and Communicate Them 30
6.1 Decomposition of Backlogltems........... ii... 30
6.2 DiscussBacklogltems. i 33
6.3 Estimate...... .o e e 35
6.4 Prioritize. ... e e e 36

7 Product Backlog and other Artifacts 38

8. Roadmap, Release Planning............, 40
8.1 ROAAMAD ..t e e e 40
8.2 Development Strategiesovviii i e 42

9. Implementing Agility in the Organization.................. 44

10. Agile Working with Multiple Teams. 45
10.1 Scrum@SCale ..ot 45
10,2 LSS i e e e 46
10,3 NBXUS ¢t ottt ettt ettt e e e e e e 48
10,4 SAFE o e e e e e 48

11. Bibliography. e 50

www.sophist.de

7 Introduction

..

1. Introduction

1.1 What is Requirements Engineering?

Do you have a wish that you cannot fulfill? Do you have a product vision or a goal
but you do not know how you can achieve it? Let’s say hypothetical, that you want
a blue car with as many horsepower as it is possible and say to your development
team that they shall build that car. However, when the final product is presented
to you, disillusionment follows. Your development team delivers a blue car with
lots of horsepower. However it is a truck and not a sports car as you had imagined.
There are difficulties in communicating, analyzing, and conveying requirements and
because of that, requirements engineering comes into play. In the past, requirements
engineering was thought to be simple or superfluous: the requirements engineer
conducts interviews with stakeholders, writes down the resulting requirements, and
composes them into a requirements specification.

However, this is only partially true. The requirements engineer is responsible for
more than just that. He/she serves as a connecting point between the stakeholders
and the developers. The following tasks are among his/her four main activities:

Requirements Engineering

Eliciting Deriving good Imparting Managing
knowledge requirements requirements requirements

Figure 1.1: The four main activities of Requirements Engineering

Eliciting knowledge from the stakeholders is his/her most important activity. However,
it is not as simple as it sounds, as knowledge is divided into three categories: the
conscious, the subconscious and the unconscious knowledge. In the example above,
you were only aware that the car should have a lot of horsepower and be blue.
These characteristics are also called performance factors. However, subconsciously
you wanted to develop a sports car, which is a basic factor to you. You may also
subconsciously be excited about automatic drive function in your new car. This is
called the excitement factor. In order for the requirements engineer to determine
these factors, he/she makes use of a variety of elicitation techniques to do so, such
as conducting interviews, reusing past products, or brainstorming.

In order for the requirements engineer to deliver his/her elicited knowledge to
the development teams, he/she must derive good requirements which can be
understood and implemented by development teams. It is essential that the

Introduction

requirements are unambiguous, complete, necessary, agreed among stakeholders
and understandable; otherwise the final product may not meet your wishes. There
are certain quality criteria for this, such as the INVEST principle. At SOPHIST, we use
e.g. our SOPHIST set of REgulations or our MASTeR templates to create requirements
with a good quality.

The preparation of the requirements is important because the requirements engineer
has to impart the requirements to further persons. Therefore, he/she uses various
imparting techniques according to the situation. Examples for these techniques can
be storytelling or videos. Usually, it is not only the content of requirements that play
a role in imparting them, but also, for example, the complexity or the scope of the
subject matter. This main activity also includes the documentation of requirements,
classically e.g. via requirements specifications, or in agile frameworks using the
product backlog.

Finally, the requirements engineer must manage the requirements. This activity
especially serves the traceability and modifiability of requirements. It may be that
requirements need to be adapted or changed because you want a red car after all,
or because you have discovered that you do not want to install the engine with the
most horsepower after all. Versioning and traces can be used to keep a record of the
changes and dependencies of the requirements. Above all, this main activity serves
to improve communication within and between development teams in a project,
to increase the quality of requirements and thus the quality of the product and
processes, and to simplify the monitoring of complex projects during all develop-
ment steps. And this reduces the stress for all involved parties.

Introduction

..

1.2 What is Agility?

What exactly distinguishes agile methods from heavyweight methods, such as the
waterfall model? The four basic ideas of agility are defined in the ,,Manifesto for agile
Software Development®, also called the agile manifesto:

Customer collaboration over
contract negotiation

Individuals and interactions over Working software over

processes and tools comprehensive documentation

Responding to change over
following a plan

Here, the cooperation with the customeris moreimportantthan contract negotiations.
Of course, contract negotiations are also important, because the cooperation should
also be defined (required resources, expectations, goals, etc.). But a positive and
constant collaboration brings more advantages than a detailed contract.

Furthermore, working software is more important than comprehensive
documentation. Again, this does not mean that documentation should be
disregarded, but instead that, time should be invested in working software rather
than in extensive documentation. It is of no use to you as a customer if your software
does not work, but it has been documented in detail.

Individuals and interactions are more important than processes and tools. Again,
processes and tools should not be completely ignored, but what we want is to ensure
communication between and within the different teams. Even if your development
team is equipped with the best tools, a good end product will only be achieved with
a good communication between all your team members and the responsible people,
such as the product owner.

Reacting to change is more important than following a plan. Having a plan is not
bad. However, the goal of agility is to react spontaneously to, for example, market
changes that interest you and to shape the product according to your wishes. And
doing so is the only way to keep your product up to date and true to what you want.

Introduction

The reasons why products are developed in an agile manner are numerous. Let’s
briefly discuss the most important ones:

P(x r, \:\ thx (t: Nyx)

m The iterative approach in sprints Emmm,m o g, O

allows for early and regular feedback - Tk s;uﬂm b e sm'ymm
. v s i XY gt
from stakeholders. This prevents the ZD m’;ﬂ“% L ml e, ees
development from going in the wrong o erﬂ&a‘*wvr - L‘?‘ig.;mg‘mw
direction. E?;\\f;;‘:‘., %ﬁﬁ/r *\Aj %5 "“ ;,.ﬂ:,w cﬁ:g
. . . | v BX] o ";3\, 5‘:“”%:,,;
m The iterative-incremental approach TES] oyt enen :
makes complex systems more . fmbe| TR 0
Vo s o] o D m'-)? 5
manageable. A B el
M afly
m The cooperation in team increases R /f\x\‘"\f\:
the employee’s motivation and SRt

ensures that everyone can identify
with the product.

m Theintentional minimization of rules and specifications ensures an efficient way
of working.
Among the best-known methods in the agile context are:

m Scrum

m Kanban

m Crystal family

Since in agile working environments are many development teams involved,
is necessary to work within a framework that facilitates the communication and
synchronization of dependencies between the teams. The most important and well-
known frameworks in the agile world are:

SAFe

LeSS

Nexus

Scrum@Scale

Introduction

1.3 RE in Agility

Since agile is a broad area with various approaches and frameworks, we will look at
requirements engineering in scrum as an example.

In order to be able to understand the requirements engineering in this framework,
we will first describe roughly the setup of scrum.

Daily-Scrum

Development

team Sprint-Planning

i) w7 > [] w7

Stakeholder Product-Owner Product-Backlog Sprint-Backlog Increment

Figure 1.2: Procedure of development according to Scrum

In scrum, the stakeholders share a product idea or vision to the product owner. The
product owner records the associated requirements in the product backlog and
discusses them with the development team. At the start of a sprint (a period between
2-4 weeks), the developers take as much content from the product backlog as they
can implement in that sprint. In other words, they define the sprint backlog. In the
sprint, the selected content is implemented according to the agreements between
the product owner and the developers. Here, the scrum master supports the develop-
ment team with concerns regarding agile working methods and processes. The goal
of the development team is to create a product increment in each sprint. A product
increment is a part of the future end product that could potentially be delivered. This
means it is something that works and has the required quality. Thus, the product will
grow from sprint to sprint.

Introduction

Roles and Responsibilities

m In order for a project to be successful, the various roles of the people involved
must be clarified in advance. A scrum team includes the roles of the product
owner, the development team and the scrum master.

m The product owner is the requirements engineer in the agile world, but with
more responsibilities than a requirements engineer in classic framework. He/
she is the interface between the stakeholders and the development team. With
the stakeholders, he/she determines the vision or the product goal, agrees this
with them and records it using product backlog items. He/she also manages the
product backlog by clearly and comprehensibly defining, prioritizing and sorting
product backlog items. In doing so, he/she should also consult with the develop-
ment team and is entitled to hand over parts of his/her tasks to the develop-
ment team. However, he/she is responsible for maximizing the value of the
product, measured against the product vision or product goals. For this reason,
he/she determines the order in which backlog items are implemented by sorting
the backlog items.

m The development team consists of 3 to 9
members who are responsible for the L |
realization of the product increment. In the .
end, it consists of several experts in various : i ‘
disciplines that are relevant to the
implementation, who work on an equal level
to implement the sprint backlog items and 7
incorporate them into the final product. The _ﬁ -
development team is self-organized and 5
carries the responsibility for the
implemented product. Frequently,
requirements engineers can also be assigned to development teams to support
the product owner in his/her activities.

m The scrum master is the one who is responsible for the implementation and
understanding of scrum. He/she is the person in charge of implementing scrum
in the organization. This means that he/she is also responsible for ensuring that
the members of the development team and the product owner adhere to the
rules they have agreed upon and that all stakeholders gain an understanding
about agile working methods. He/she also gives advice to the development
team and the product owner on the methods and techniques that are used in
the everyday work.

R f

; T,
D

== 5 Lﬁ

m Despite all this, the most important role is the role of the stakeholder. This is
often taken on by individuals, companies or organizations. The stakeholders
determine a vision or a product goal and are the contact person for the product
owner in this respect.

Introduction

I am responsible for the

| determine the product and RE

requirements

8 a

Stakeholder Product Owner

| take care of the
processes

We create the

product
Developer Scrum Master

Events

There are a few events established within the scrum framework. These events are
described below:

The sprint is a period of only a few weeks and at the end of each sprint a part of
the product (a product increment) should be implemented. In this way, the
product continues to grow from sprint to sprint.

The sprint planning takes place at the beginning of each sprint and is used by
the scrum team to determine what should be implemented in the sprint. In
addition, the developers will also plan how the implementation will take place
in the sprint.

The review takes place at the end of each sprint and is primarily used to review

the sprint results together with the stakeholders and at the same time to gather
feedback from them.

The daily takes place every day during the sprint and it is used for the developers
to briefly agree on what work is to be done that day.

The retrospective rounds up a sprint and lets the team members review the
sprint in order to find approaches that can be used to improve their work.

In this brochure we would like to show you how requirements engineering looks like
in scrum, what happens in the events and what else needs to be done outside the
events regarding requirements engineering.

Introduction

Artifacts
Scrum defines three artifacts

m The product backlog is the place where we will store our requirements. The
backlog is an ordered list of all the things that are to be incorporated into the
product (see chapter 5.1)

m The sprint backlog contains all the backlog items that are to be implemented in
the current sprint. It is filled by the developers with item from the product
backlog at the beginning of the sprint during the sprint planning.

m The (product) increment is the result of a sprint. The increment is a (small) part
of the product which is developed in one sprint, so that the final product will be
developed during multiple sprints.

It may also be useful to use other artifacts. These three are at least the minimum of
artifacts that are required.

In chapter 7 we have explored the idea of further artifacts for requirements
engineering in scrum.

Goals, Stakeholder,
Delimitation of the System

..

2. Goals/Vision, Stakeholder, Delimitation
of the System

In order to elicit requirements for the system to be developed, you, as a requirements
engineer, should build a foundation. This foundation consists of defining the goals/
vision, of finding the right stakeholders and determining the context and boundaries
of the system to be developed.

2.1 Goals/Vision

Goals are initial rough requirements that specify the direction in which development
needs to be going. The term vision is often used in connection with goals. Vision is a
rough and long-term definition of goals. It is important that the goals/vision are
documented and that all participants have a common understanding of these.

ety

The HomeCompany

Figure 2.1: Example of a Vision Box

Because without clearly defined goals/vision, you - as a requirements engineer may
find yourself in the situation where you have no guidance on which goals/vision must
be met by the requirements and may be specifying past the actual goals/vision.

And without a shared understanding of the goals/vision, it is possible that individual
stakeholders may end up dissatisfied because the system developed does not meet
their expectations.

Goals, Stakeholder,
Delimitation of the System

You can avoid dissatisfaction by working together with all stakeholders in order to
identify and document the goals/vision.

To elicit these, you can hold a workshop where you can create, together with the
stakeholders, a vision box [insert reference], formulate the goals/vision using
methods like: PAM (Purpose, Advantage, Measure), News from the future or using
a canvas.

To describe high-quality goals/vision, the acronym SMART is also often used. The
individual letters stand for Specific, Measurable, Attractive, Achievable, Time-bound
and can help you formulate good goals.

Specific

Measurable

Achievable

Relevant

Time-bound

=P =Ew

Figure 2.2: SMART

2.2 Stakeholder

In addition to defining the goals, it is also important that you find all relevant stake-
holders. As we have already mentioned (in Chapter 2 Roles and Responsibilities),
stakeholders are of great importance.

To find all relevant stakeholders, we use stakeholder checklists. Once you have
identified a stakeholder, you should systematically document the relevant information
about that stakeholder. A simple way is to keep a form of table. Keep in mind that
stakeholders can and should be added on an ongoing basis and that the stakeholder
list must be maintained and updated accordingly.

Contrary to classical approaches, you - as a requirements engineer have to involve

Goals, Stakeholder,
Delimitation of the System

the stakeholders in a different way in agile approaches, since they are to participate
continuously in the development of the product. This leads to additional tasks for
the requirements engineer. For example, the requirements engineer must present
the product increments to the users in order to obtain feedback, or he/she must
encourage the stakeholders to participate on an ongoing basis.

2.3 System Context

The basis for the elicitation of requirements should almost be complete now. After
you have identified and documented the goals/vision and the relevant stakeholders,
all that is missing is the context delimitation.

You should determine here the rough scope of the system, the context of the system
and the associated system boundaries to separate it from its environment.

irrelevant environment

system context [[[>

context boundary

system
>

system boundary

[

The system boundary is determined by the fact that no requirements will be
captured for the parts that are outside the system boundary. But for these parts,
you will still need to delimit the system context from the area that plays no role
in the requirements. The boundary between these two areas is called the context
boundary.

To determine the system context, you must identify all objects that have a connection
to your planned system and therefore influence the requirements for the system
under development.

Goals, Stakeholder,
Delimitation of the System

As with the stakeholder list, you must take into consideration that the system
boundary is not yet definitive. So you and the developers will start to develop the
system, although the final system boundary and context boundary has not yet been
established.

Especially in agile frameworks, we have the phenomenon that the system boundary
and thus the context boundary keep changing in the course of the development. It is
therefore of great importance to always keep this in mind.

-

Online Trainings

Your SOPHIST training - almost anywhere in the world

Online trainings are specifically designed to deliver knowledge and skills via
the internet. The unique and carefully thought-out elaboration - in terms of
content and didactics - as well as a maximum number of participants of 12
persons ensures a perfect online knowledge transfer.

For Individuals and smaller teams, our ,open trainings” are perfect. And
due to the modular structure, the combination of different focal points and
the possibility of individual adaption, online trainings are also perfectly
suited for internal company trainings of complete teams.

Of course our well-known CPRE certification training courses are also
available in this format.

... N0 matter where

From Requirements to the Product

3. From Requirements to the Product

The Life of a Backlog Item

Just as it is done within non-agile frameworks, we also need to identify, analyze and
communicate requirements, although we find ourselves within an agile framework.
Of course, there is also administrative work, but this is not the focus at this point.

Let’s take a look first at requirements elicitation, the activity that can, from a logical
point of view, be considered the starting point. The big difference in the agile
framework in comparison with classic frameworks is the point in time when we elicit
requirements. Especially detailed requirements will be considered and analyzed
just before they are to be implemented and everything that will be implemented
in the distant future may only be recorded as a rough requirement. This means that
when we work out detailed requirements with the stakeholders, other requirements
have already been implemented (except in the first iterations) and thus the system
parts that already exist can, or should, be of great help in determining the new
requirements.

The elicited requirements are gathered in the product backlog as backlog items (e.g.,
user stories). It can be helpful to group the backlog items according to topics. This is
usually done by assigning detailed backlog items to roughly detailed backlog items.
An example of this is the assignment of user stories to epics.

Rough
Epic Access & Security
Feature Monitor access . . .
Medium Monitor window
doors
Unlock entrance Automatically lock Unlock window Aut ticall
: H . utomatically
User-Story door for authorized J———— Detailed for autorized lock window

persons

persons

Figure 3.1: Example of User Stories for an Epic

From Requirements to the Product

The backlog items collected in the product backlog must be prioritized on a regular
basis. This is our responsibility as product owners. However, this should not prevent us
from seeking advice and other opinions. If the priority should reflect the importance
of a backlog item for the user, then we should refrain from deciding ourselves what
is important for the user. Unless, of course, we ourselves are the future users of
the product. You can find more on prioritizing backlog items in chapter 6.4. lin our
product backlog we have to sort the backlog items according to their priority. This
means that the items with the highest priority will be at the top of the backlog.

Now, after the prioritization took place, we know which requirements (backlog items)
have the highest priority and we will implement these items according to their
priority. But before the implementation can start, we still have to do a few things. We
have to get the backlog items into a shape in which the entire scrum team agrees
that the backlog item is ready for implementation. In this situation we say that the
backlog item is “ready”.

The definition of ready (DoR) helps us to decide when an item has reached this state.
The DoR contains all criteria for a ready backlog item and is agreed upon by the entire
scrum team. Common and also useful contents of the definition of ready are::

The backlog item fulfills the INVEST principle (see chapter 6.1)

The backlog item is understood by the parties involved (see chapter 6.2)

The backlog item contains acceptance criteria (see chapter 5.2)

To meet these criteria, we need to decompose the backlog items (see chapter 6.1)
and talk to stakeholders about them in order to gain a more detailed knowledge
about it. We need to do everything we can to gain a shared understanding regarding
the contents of a backlog item and determine when, in our eyes, the backlog item is
ready to be implemented. So, we analyze the backlog items in detail and make them

From Requirements to the Product

more concrete. However, we should not take it too far, because we do not want to
document all requirements down to the smallest detail in the backlog items, for a
reasonable amount of freedom should be left for the developers.

We must do this always for the backlog items that are to be implemented in the near
future. Therefore, this will be an ongoing activity. Because whenever backlog items
are implemented, new backlog items move to the top of our product backlog.

An important point within agile development is to create a shared understanding.
Therefore we will talk on a regular basis with the developers (and also together with
stakeholders) about the backlog items. Refinement meetings can be scheduled to
talk about the backlog items that will need to be implemented in the near future.
The time between the meeting and the actual scheduling of a sprint should not be
too long; otherwise everything that was discussed will have been forgotten by then.
You can read about what needs to be taken into consideration in such a meeting in
chapter 6.2.

When the backlog items have reached the status ready, they can be moved into the
sprint backlog by the developers during one of the next sprint planning sessions. By
doing so, they will be removed from the product backlog and thus room will be made
for the next backlog items, which shall go through the same steps. All the backlog
items that the developers think they can implement in the sprint end up in the sprint
backlog. But the developers don‘t just choose random items from the backlog; they
follow the order of the backlog items in the product backlog. Therefore, it is very
important that to have properly ordered the backlog.

At the end of the sprint, the results, i.e. the product increment created in the sprint,
are presented to the stakeholders in a review meeting. Here, the stakeholders can
see how the product was developed further within the sprint and will have the
opportunity to give feedback and name new requirements. This is usually the point
at which the lifecycle of a backlog item ends. If the backlog item is needed again later,
it can be archived. Otherwise it shall be deleted.

The last act in a sprint is the retrospective. This allows us to reflect on the previous
working methods and to develop ideas regarding potential improvements. The
retrospective focuses on the cooperation within the team and not on the product.
The retrospective is very important because agile work strives for continuous
improvement.

Eliciting Requirements

4. Eliciting Requirements

Requirements elicitation is an ongoing activity. It is carried out until the end of
product development. Particularly at the beginning of the development, many
requirements are initially only coarsely elicited. As soon as the implementation of
the requirements approaches, the detailed requirements are to be elicited.

The specific characteristic of the agile approach is that we can and should use the
product increments that have already been developed to help us elicit further
requirements. This allows the stakeholders to experience what has been achieved
with the previous requirements and to come up with new requirements in a playful
way. Some quality requirements in particular (performance, usability, etc.) can be
made explicit more easily in this way.

By allowing stakeholders to provide feedback on existing product increments, to
express new requirements and to be able to change requirements throughout the
product development, they will be given a sense of being an active part in the
developing the product.

In the agile world, we are also seeing an increasing number of approaches that involve
the stakeholders more closely in the elicitation of requirements. Working out a story
map [Rupp 20] together with the stakeholders can bring undiscovered requirements
to light. Or you can go through a user journey together with the users. There are also
approaches that combine different techniques. Well known are “Design Thinking”
and “Living Labs” [Rupp 20]. If certain stakeholder groups are not known or the group
is too large and it is impossible to be able to talk to individuals, then personas and
crowd-RE offer promising approaches that can help you in eliciting the requirements
of these stakeholders. [Rupp 20]

Documentation of the Requirements

5. Documentation of the Requirements

5.1 The Product Backlog

Whereas in the non-agile frameworks one typically works with requirements
documentation (e.g., a requirements specification), in the agile framework, most of
the requirements are found in the product backlog. Thus, the product backlog is the
central place where requirements are documented. However, not everything that
is to be found and documented in the product backlog automatically has to be a
requirement. In the product backlog, you will find everything that, according to the
current status, will be included in the finished product at some point. It is important
to emphasize the ,current status”, because just because something is in the backlog
today does not mean that it will still be there tomorrow.

In principle, the following properties are attributed to the product backlog.

D etailed appropriately
E stimated
E mergent
P rioritized

Figure 5.1: DEEP

The product backlog Items are detailed according to the current needs. This means
that the items that are to be implemented in the near future have the level of detail
required for the implementation. Other backlog items are allowed to remain less
detailed for the time being. This differs from the classic requirements specification,
where the level of detail of the requirements does not depend on the time of
realization.

Moreover, the backlog items should be estimated. This enables the product owner
to plan ahead even for a long period of time. For more information about estimation
see chapter 6.3 and for more Information about planning see chapter 6.4.

Documentation of the Requirements

Detailed

Product Backlog Item

<—— |evel of refinement —8 — =
Priority

Less detailed Low

Figure 5.2: Product Backlog

N E HE EEEEEBRN H B RN
www.sophist.de/ bage/ ksa1

&

An important property of the backlog is its emergence. This means that the backlog
is subject to constant change. The order of the backlog items or the backlog items
themselves can change at any time. Items can disappear from the backlog or new
ones can be added at any time. Hence, according to the definition, a product backlog
can never be complete. In our opinion, this is the key difference to a requirements
specification, which should be complete at a given point in time.

The product backlog should also be prioritized. This means that the product owner
must be aware of the value of the individual product backlog items in order to
sort these correspondingly in the backlog. This is because the product backlog is
implemented iteration by iteration from top to bottom. Therefore, the items with the
highest value should be at the top so that they can be implemented first.

Documentation of the Requirements

5.2 From Product Backlog Items to User Stories

As described in the previous section, in the product backlog we will find the product
backlog items (PBI).

Everything the PBIs can be is like a colorful flower bouquet and goes from epics, user
stories, stories over bugs, incidents to, well quite simply, product backlog items. The
term user story or simply story is often used because the backlog items are described
much like a short story of a future system user. There is a sentence template for this
purpose, which is structured as follows:

As <Function> <Benefit>

<Role> | want to

Figure 5.3: User Story Template

This template ultimately answers three “W”-questions:

®m Who wants to accomplish something?
m What they want to accomplish?
m Why they want to accomplish that thing?

Especially the latter part causes several problems for many aspiring product owners
when it comes to phrasing it. However, this statement is definitely highly desirable,
since we have to think about the ,why“ of a function. After all, we invest time and
money to implement this function in a single iteration. But this question is not only
important for the raison d‘étre of the PBI. The answer to the “what for” or “why”
question also serves another important purpose. It is extremely valuable for the
developers to understand what goal the user is aiming for with the function. Thus,
this kind of phrasing enables a goal-oriented realization of the PBI by the develop-
ment team.

APBlusuallyalsoincludesacceptance criteria. These are defined by the product owner
and describe the criteria according to which he/she will accept the product increment
at the end of the sprint. Acceptance criteria are formulated more concretely than a
user story and supplement or detail the contents of a story accordingly. Therefore,
the acceptance criteria should be formulated according to specific templates.

No matter what terms are chosen for the PBIls, an important task of the product
owner is to prioritize the backlog items and assign a value to each backlog item. The
product owner must create as much value as possible and establish a good balance
between the resources used (the work of the scrum team) and the value of the result.

27 Documentation of the Requirements

P> Time

Figure 5.4: Value graph

As we can see in the graph, an important goal of the product owner is to create as
much value as possible in the early stages of the product’s development. Logically,
PBIs with lower value then remain, which causes the curve to flatten out. At the
latest, when the curve no longer has a slope, one should consider whether further
development should be stopped. However, this curve is rather ideal-typical than
corresponding to reality. Through prioritization, however, a product owner should
approach this curve as closely as possible.

SOPHIST

Competence and expertise |

— par excellence

-

= =ua Speaker
Author of books

Il’

& | =
A ‘

/ Method mventor I '

asiswissen

REQUIREMENTS y
ENGINEERING .
MANAGEMENT

7 LT

Consultant Coach

‘ Trainer

We offer you:

We support you competently, energetically and expen-
diently both in adapation of your development processes
and methods and in the implementation of your project.

Our customers include many world-renowned companies.
The large number of positive opinions and project reports
from our satisfied customers speaks for itself.

Take a look at www.sophist.de/referenzen

Our services:
m Identify, exploit and introduce potential for improvement

taking into account the constraints in your oragnization

m Elicit, analyze, convey and document requirements and
architectures appropiately

m Onthe way in simple software applications up to complex
systems

m Work in agile and adapted way

All of this and many other topics from the world of requirements
and systems engineering we offer you in the form of consulting,
coaching, training and lectures.

How can we help you?

be happy to elaborate a concept with you
to provide you with the best possible support for
your project.

Contact us without obligation:

+49 (0) 911 40 900 - 0

heureka@sophist.de

Deriving Good Requirements
& Communicate Them

6. Deriving Good Requirements and
Communicate Them

6.1 Decomposition of Backlog Items

In a product backlog we can distinguish product backlog items (PBI) in different levels
of detail. One common way is to divide the backlog items into three different levels
of granularity:

m Epics are generally rough descriptions, i.e. they are very large and vague.
Example: As a house resident, | want the building to be monitored to prevent
unauthorized access.

m Features are medium-detailed, meaning they are medium sized and slightly
more detailed than epics, but still too large to implement in a sprint.

Example: As house resident, | would like to have an automated control of the
windows to prevent unauthorized access.

m User stories are fine-grained, i.e. they are small and detailed.
Example: As house resident, | would like the windows to be closed when all the
residents are absent, so that no window remains open.

Vision/Goals O

I\ A

requirements O O O

(e.g. Epics)

Medium detailed

\
requirements O O O O
(e.g. Features)
requements o/cg o\g)'/ g\‘o o’/cI)/O/cI)\o

(e.g. User-Storys)
Figure 6.1: Parent-child relationship between requirements

However, there is no criterion for classifying requirements into epics, features, or
user stories. Rather, it is a rough classification. Sometimes, it may also prove useful
to distinguish only between rough and fine requirements. And as mentioned earlier,
epics, features, and user stories are only one way to distinguish between backlog
items.

Deriving Good Requirements
& Communicate Them

The task is to break down the backlog items, i.e. the requirements, into a practical
size. There are several reasons for doing this:

m Requirements are to be implemented in sprints. Therefore, the requirement
should be detailed enough so that it can be implemented in one sprint.

m The needs of the stakeholders are usually of a more concrete nature. In our
example, the residents of the house do not just want any smart home system,
but certainly have more specific wishes.

m The understanding of the content that is transported by requirements often
only becomes clear when the team thinks about the details.

These are just a few of the reasons why we break down rough requirements into
more detailed requirements.

When decomposing the backlog items, we often follow the INVEST principle, which
was defined by Bill Wake in 2003. The INVEST principle describes properties or
criteria that the backlog items should fulfill. We can broadly say that the more
detailed a backlog item is, the more seriously we take the INVEST principle.

Testable)
Small)
Estimable)

Clndependent

(Negotiable
C Valuable

Figure 6.2: The INVEST principle

INVEST means the following:

m Independent: Backlog items should be independent of each other. This means
that a backlog item can be considered on its own and implemented without the
need for further backlog items.

m Negotiable: Backlog items are negotiable. They do not represent a contract that
has to be implemented in exactly the same way, but leave the developers
enough freedom to work out the details in a sprint together with the
stakeholders.

m Valuable: Backlog items provide a value. Usually a value for the customer, or for
the future user. In this context, it is irrelevant how large a backlog item is. Even
the smallest backlog items must deliver a value. If this is not the case, then you
should seriously question their existence and the need to implement it.

Deriving Good Requirements
& Communicate Them

m Estimable: Backlog items must be estimated (see chapter 6.3). This estimation
helps, for example, to sort the backlog item into the product backlog, or to be
able to make a statement about how large the backlog item is. In order for the
backlog item to be estimated, it needs to be understood by everyone involved.
Otherwise, estimation will not be possible.

m Small: Backlog items should be small. The smaller they are, the more specific
they usually become. But this is not the only decisive factor; the sprint length
also playsarole. After all, the backlogitem should be able to be fullyimplemented
in one sprint. Accordingly, we have to choose the size so that the item can fit
into the sprint but also leave enough buffers so that the smallest surprise does
not immediately jeopardize the implementation in the sprint. But be careful. Do
not tend to cut the backlog items too small. This will only increase the
administrative workload without adding any value.

m Testable: A backlog item should be testable. This means that it is sufficiently
well understood as to be able to describe how it can be verified whether the
backlog item has been implemented according to the wishes. The use of
acceptance criteria for the respective backlog items is suitable for this purpose.

You are certainly wondering yourself how can you satisfy certain aspects of the
INVEST principles regarding the rough backlog items. This question is quite justified.
The complete INVEST only applies to detailed backlog items. However, less detailed
backlog items should at least satisfy the first three aspects, i.e. the INV.

Figure 6.3: From rough to detailed

As soon as the time to implement backlog items comes closer, you have to make sure
that they are of a proper size. However, you are not completely alone in this: you can
also ask developers for help. For example, backlog items are often decomposed in a
common backlog refinement meeting. But we can‘t always do everything in the big
picture. After all, developers have other tasks as well. For example building a system
out of backlog items.

Deriving Good Requirements
& Communicate Them

This means you can‘t avoid decomposing or refining backlog items - depending on
which term you want to use - on your own. You could say that we do preliminary work
before we put the finishing touches on the backlog items in the common meeting. In
any case, you should keep the INVEST principle in mind, so that the detailed backlog
items will ultimately be good backlog items. There are a variety of approaches
according to which criteria a rough backlog item can be split.For example, you can go
by workflow steps, or by data, etc..

Take into consideration that an approach to splitting backlog items that worked well
once will not automatically always work. You will have to vary depending on the given
circumstances. However, because you will continue to learn more and more, over
time you will notice that splitting becomes easier and easier. In general, however, we
advise against splitting by system or software units. It may seem easier for developers
to have backlog items for the frontend and backlog items for the backend. But you
will quickly lose sight of the goal, which is a useful, functional, high-quality product
for the future user.

6.2 Discuss Backlog Items

Product backlog items are a communication promise according to the 3C principle
(card, conversation, confirmation).

Card

=
Conversation 888

Confirmation

Figure 6.4: The 3-C Model

It is primary intended to be talked about. Important conversations about the backlog
items take place between the product owner and the developers. This is because
the product owner has the knowledge about the information behind the PBl and the
development team needs this knowledge or understanding in order to implement
the PBI.

Deriving Good Requirements
& Communicate Them

In the agile world are various points in time at which these conversations can take

place. For example, in the context of the sprint planning or probably more intensively
in a refinement meeting between PO and developers.

The goal of these discussions is to ensure that

m PO and the development team have a common understanding of the PBI
m Open issues or matters about the PBI have been identified

m Inthe case of a PBI that is to be implemented in the upcoming Sprint, whether
the details of the PBI are known to everyone involved.

Most of the time, these discussions are conducted in a way that the product owner
opens the backlog item, briefly describes it and then all the participants discuss it.
You may have already had the experience that these discussions are not entirely
satisfactory.

The discussion quickly drifts into topics that do not belong in the PBI
The solution is already being discussed in detail, although the problem is not
even yet for all understood

m After half an hour of discussion, the team no longer knows what decisions were
made at the beginning

m The discussion group loses sight of the goal of the discussion

Es kann also viel Zeit investiert werden, das Ergebnis aber nicht angemessen aus-
fallen. Deswegen sollten Sie sich fiir diese Gesprache im Vorfeld schon Zeit nehmen
und sie auch vorbereiten.

Perhaps you would like to structure the discussion by working with the team to
create another development artifact (e.g., test cases)? These are just a few examples
of the different methods for successfully conducting a meeting to discuss PBls, which
we have successfully used in our projects.

Deriving Good Requirements
& Communicate Them

6.3 Estimate

Estimating backlog items is not a requirements engineering activity per se. However,
we need this estimation for other requirements engineering tasks (e.g. checking the
requirements for comprehensibility) and therefore we dedicate a few words in this
brochure for this.

5009 15 kg

Figure 6.5: Estimation

The backlog items must be constant estimated regarding their size. This not only
serves to fulfill the properties of a backlog (DEEP see chapter 5.1), but also has other
reasons. First, the estimation allows a statement about whether a backlog item is
small enough so that it can be implemented in a sprint or whether it needs to be
broken down further. In addition, a statement can be made about how simple or
complicated a backlog item is. Release planning can also be created with the starting
point being an estimation (see chapter 8).

Probably the most important reason for estimation is not the estimation result
itself, but the estimation itself. In agile frameworks, estimation is not performed by
individuals, but always by more individuals belonging to a group. It makes sense that
this is done by those who have to implement the backlog items, i.e. the developers.
If several people estimate a backlog item, there will logically be deviations in the
estimates of each of them. If these deviations are large, then this is always a clue that
in those group different ideas about what is hidden behind a backlog item exists. For
us, this is a clear indication that there is still a need for clarification and coordination
within the group.

It is easier to make an estimate relative to each other than absolute. Let’s imagine
two people in a photograph. If we do not know these persons, we cannot say how tall
these persons are. But we can make statements about how the size of one person is
in comparison with the size of the other person. In addition, by estimating relatively,
we take away the worry of having to estimate an absolute effort against which we are
subsequently measured. Accordingly, we do not estimate the effort behind a backlog
item, but the complexity of the effort.

Deriving Good Requirements
& Communicate Them

Estimation is the process of determining the complexity of a backlog item. This is
then recorded in story points, T-shirt sizes or other units so that it is cannot be seen
as an effort and no conclusions can be drawn about performance.

There are various methods for estimating, such as Planning Poker, T-shirt sizes, Magic
Estimation or Wall Estimation, to name the most popular ones.

6.4 Prioritize

In chapter 5.1 “The Product Backlog” we have said that the product backlog items
are to be sorted in the product backlog. Sorting the backlog items is a task of the
product owner and has two main goals

m To make the priority of a backlog item visible;
m the higher a backlog item is in the backlog, the higher is its priority
m To direct the concentration to the important backlog items;

the higher a backlog item is in the backlog, the more we need to deal with it.

In order to sort the backlog items we need to have knowledge about its priority
However, as a product owner, we are not alone in determining this priority.
Depending on what the priority means, we can get useful help from stakeholders or
the developers. It is only our responsibility that the priority will be determined.

In order to set a priority, we must become aware and define the criteria we will be
using to determine the priority. We determine the criteria by asking ourselves what
is important at the moment. This could be, for example, that we want to provide
the future user of the system with the most helpful functions or it may be that
certain quality requirements are very important at the moment. These are only two
examples of what can be understood under priority criteria.

37 Deriving Good Requirements
& Communicate Them

Priority —— >

=
=

Figure 6.6: Sorting the product backlog according to priority

In essence, our first concern should be to prioritize the value for the future user(s).
Because they are the ones for whom we develop the product. Of course, there may
be cases (and we are sure there will be) where other criteria play a greater role. But
whenever there is no other particular reason to deviate from this, the user/customer
satisfaction should come in first place.

Various techniques are available for the prioritization itself. Well-known techniques
are MoSCoW, Kano model, linear prioritization or Weighted Shortest Job First.

It is important to know that prioritization is not a one-time thing, but is to be done
on a regular basis. Because every day new requirements can appear, which then have
to be prioritized accordingly. Moreover, the criteria for prioritization can also change.

Product Backlog and other Artifacts

7. Product Backlog and other Artifacts

A central artifact within agile frameworks is the product backlog. This is where we
find all currently known requirements. If we are being honest, however, not all of
them. Some requirements are better off elsewhere, for example in the definition of
done.

In addition to the requirements, there are other ways to document knowledge. For
example, in addition to the product backlog, a data model in the form of a class
diagram may be helpful. Perhaps process descriptions are helpful when discussing
the backlog items in order to see the backlog items in their context. These could
be documented with BPMN or activity diagrams. It might be helpful for developers
to understand what kind of people the eventual users are. A set of documented
personas could serve this purpose. This is just a small preview of various additional
documentation for the Product Backlog. Everything that helps and makes sense in
order to strengthen and promote the common understanding of the stakeholders’
needs is permitted and desired.

Brochures

»
|

WISSEN /| —

e < Die SOPHISTen
Oie SOPHISTe, oe

»Short & »Anforderungen und
Architekturen fir
The SOPH) 57 komplexe Systeme«

RE-PRIMER

cleverg

——— <

>

Die SOPHISTen Die SOPHISTen

lever & kompakt« -
»C P »Verbesserungspotenzial & vagiies

Die RE-FibE| effektiv heben« Requirements.
von SOPHIST Engineen'ng«

sssssss

sssssss

www.sophist.de/wissen-for-free

Roadmap, Release Planning

8. Roadmap, Release Planning

8.1 Roadmap

By working in sprints, the focus of the work is often on the current and the upcoming
1-2 iterations. This means we can make statements about what is being worked on in
the current iteration and what the scope of the upcoming iteration will be. Possibly
the scope of the next but one iteration is also foreseeable, but usually we do not look
further into the future.

However, the distant future may also be interesting for us. There may be restrictions
in terms of budget or deadlines. Users want to know when they can expect which
features in the product. Developers are also interested in what is coming in the near
and distant future. These are just a few reasons why we need to take a look into the
future every now and then, even when working within an agile framework.

In order to make this possible we need

The backlog items
The priority of the backlog items
An estimation of the backlog items

The velocity of the developers

With the help of these four elements, we can now arrange the backlog items on a
timeline and roughly but accordingly estimate the time at which we expect a backlog
item to be implemented. For this purpose, it will be helpful to divide the timeline into
manageable sections, for example, one year into four sections.

The backlog items are then assigned to these sections. We take into account the
priority of the backlog item, the estimate and the velocity.

In this way we achieve an approximate planning of the backlog items even over a
longer time horizon.

Roadmap, Release Planning

..

Roadmap

Release 1 Release 2 Release 3

Figure 8.1: Release planning with roadmap

Important: These so-called roadmaps only reflect the current assessment. It must
be updated regularly and must not be seen as a commitment that the scrum team
is making.

Generally, the further the plan extends into the future, the less accurate it will be.
After all, many more unforeseen events can happen in a year from now than in the
next two weeks. It is therefore important to regularly check the plan and update it
if necessary. This is the only way to recognize at an early stage whether the plan will
work out or not.

If the plan does not work out, then this is a sign that you find yourself in the real
world. Whereby, we assume with this statement that your plan reaches further into
the future than maybe 1-2 months.

Roadmap, Release Planning

Once we realize that the plan is not working out, we have several options as means
of reaction:

m Changing the scope of the product

m Postpone the completion date

m Assign more teams for the implementation
The first two options are usually easier to imple-
ment, as the addition of further employees
naturally requires a training period. However, this is

not true in all cases. Sometimes the deadline simply
cannot be changed.

8.2 Development Strategies

A possible targeted development strategy is directly related to the roadmap. This is
because it does not always make sense to work through the backlog items in exactly
the order that the priority actually specifies or would specify.

We may start with the backlog items that we can implement the fastest. Or we want
to be able to show something to the stakeholders as early as possible. But maybe
we want to try something out first, and then find out how future users will handle it.

So there are different reasons to decide for a certain order of processing backlog

items. Depending on which reason plays a bigger role for us, we will choose a certain
development strategy.

Common development strategies are:

Minimum Viable Product (MVP)
Minimum Marketable Product (MMP)
Low Hanging Fruits/Quick Wins
Weighted Shortest Job First (WSJF)
Risk Reduction

SOPHIST Self-productions

A different kind of knowledge carriers!

WISSEN FOSEEIS
for free The SOPHIST UML-poster

Notationselemente der UML 2

=)))

Implementing Agility in the Organization

9. Implementing Agility in the Organization

If you are faced with the challenge of establishing agile development practices for
the first time, you have your work cut out for you.

First of all, we need to ask ourselves how agile we want things to be. Because we
do not always work completely agile. Sometimes we use hybrid approaches to take
advantage of agility when, if we cannot work completely agile due to constraints.

Another aspect that is interesting is the question of how do we introduce agility? We
can take a top-down approach, where agility is introduced from management. Or we
may prefer the bottom-up approach, where the employees themselves are involved
in shaping agile working. Especially the latter offers the opportunity to make the
introduction of agility itself agile. There are newer interesting approaches here, such
as open space agility (OSA)

A major hurdle in the introduction of agility is often the need of change of the
mindset among those involved. Developers now work in a self-organized way, the
focus is on the product and the best product for the user/customer. We have higher
transparency regarding who is working on which topic. It is more about a common
understanding than concrete specifications of what exactly should be built. Achieving
this change in mindset is a challenge in itself.

Another challenge is the environment. By this we mean the people who are not part
of the scrum team, for example. Let’s take the stakeholders. For them, agility can be
completely unfamiliar because they may be very waterfall-driven themselves.

As we are often involved in the implementation of requirements
engineering and recently particularly in the agile context, we
have gathered our experience in an innovation project in order
to provide a set of measures that can make this implementation
successful.

Einfiihrung von Agilitat

Agile Working with Multiple Teams

10. Agile Working with Multiple Teams

In order for teams to work well together, they must not be too large. It is said that
from about 9 people in, a team becomes too large to work effectively. If the product
to be developed has a scope where a team would need a relatively large amount of
time to build the product, then it may make sense to build the product with several
teams at the same time.

If several teams are working on one product, additional challenges arise:

Responsibilities of the teams must be clarified

Dependencies between the teams must be made visible and reduced
Dealing with cross-team issues (e.g., consistent design of the user interface)
Maintaining an overview of the product as a whole

Integrating the results of the individual teams into one product

10.1 Scrum@Scale

The Scrum@Scale metamodel uses scrum and scales it for multiple teams. In doing
so, the developers of this metamodel have taken care to define as few additional
rules as possible as in scrum itself.

Scrum@Scale sets the team size to a maximum of 5 developers, a product owner and
a scrum master. Several such teams form a unit, whereby a unit has up to 5 teams. If
there are more than 5 teams, multiple units are formed (cf. figure 10.1).

@

e e

Scrum@Scale with 5 Teams

Figure 10.1: Scaling in Scrum@Scale

Agile Working with Multiple Teams

Let‘s assume we have up to 5 teams working on a product. Therefore, we would also
have 5 scrum masters and 5 product owners. The scrum masters in turn form a scrum
master team and the product owners form a product owner team. The scrum master
team works together to improve collaboration and the product owner team ensures
that the product backlog is filled, refined and prioritized. If it becomes difficult to
make decisions in the product owner team, there is a chief product owner who then
will have the final say.

10.2 LeSS

LeSS stands for large scaled scrum. The idea behind it is to extend classic scrum for
multiple teams while making as few changes or giving as few restrictions as possible.
The goal is to keep the flexibility and principles of scrum, but scale it to work with
more people.

Introduction in LeSS-Framework:

The framework is designed for up to eight teams. In the event that more teams need
to work on the same product, there is LeSS Huge, an extension to LeSS that introduces
additional roles.

PO
8 Sprint Team 1 : Sprint Team 1
Planning 1 Review Planningl [——
Sprint Team 2 Sprint Team 2
Retro ——
Sprint Team 3 Sprint Team 3
Planning 2 Planning2 [
Sprint Team 4 Overall Retro Sprint Team 4

Figure 10.2: Working with the LeSS framework

The teams at LeSS are set up in the same way as in a traditional scrum. However, all
teams have the same PO and work with the same product backlog. Scrum masters
can supervise one or more teams if needed. In scrum, an interdisciplinary team
develops a product. In LeSS, multiple interdisciplinary teams develop a product
together, with each team focusing on a different functionality (feature) desired by
the customer. This is why LeSS also refers to feature teams. The work of the feature
teams is synchronized so that they all have the same sprint length and the same start
and end time for the sprints.

47 Agile Working with Multiple Teams

Sprint planning is divided in two phases. In sprint planning 1, the teams or
representatives of the teams meet with the product owner to clarify the sprint goal
and decide which product backlog items should be implemented by which team.
Each team keeps its own sprint backlog and plans in sprint planning 2 how it will
implement the selected product backlog items.

Product backlog refinement should be
done, if possible, with all teams or at least
several teams together, as by doing so it
will promote a shared understanding of -
the product vision and communication
between teams. If all feature teams gather
in a common refinement meeting, LeSS
can bring together up to 72 people. Add
to that product owners and, as needed,
stakeholders, users, or subject matter
experts to clarify questions and refine requirements. For a workshop of this size
to work, good preparation and moderation are required. We would be happy to
advise you on planning agile workshops and help you find out which of the many
techniques and methods for knowledge transfer in groups and for communicating
and documenting requirements are suitable for you.

Similar to sprint planning, the retrospective also takes place in two parts. First, each
team conductsits own retrospective, as in classic scrum. In addition to the cooperation
within the own team, the work between the different teams is also discussed in order
to identify overlapping obstacles. Subsequently, the overall retrospective takes place,
where the PO, scrum master, representatives of the teams and, if required, also the
management meet. Cross-team obstacles in the collaboration or structural problems
in the organization that prevent the teams from performing their tasks are discussed.
Recipes for success and best practices that a team has discovered can also be shared
here.

LeSS Huge — Expansion of LeSS to More than 8 Teams

To ensure communication and a smooth workflow when working with many teams,
LeSS Huge introduces a new role. The product owner gets support from several Area
Product Owners (APO), each of which is responsible for a sub-area of the planned
functionality of the overall product. As with the individual product backlog items, the
topic areas for APO assignment are also split up by subject matter so that a customer-

facing functionality can be implemented as a whole.

Agile Working with Multiple Teams

10.3 Nexus

Similar to LeSS, nexus also builds directly on scrum and makes relatively few changes.
In contrast to LeSS, however, a few more new roles, artifacts and events are defined.

Nexus works with 3 to 9 development teams, which all have the same sprint start
and end. For all teams there is exactly one product owner. This is often supported by
requirements engineers who are a part of the teams.

A special feature of nexus is the nexus integration team (NIT). This team consists of
the product owner, a scrum master and other people who can also come from the
development teams. The task of the NIT is to support the integration of the results
of the individual teams into a common product. The NIT has more of a coaching role.

Sprint planning consists of two parts: Nexus sprint planning for all teams, in which
backlog items are distributed and prioritized among the teams, and individual sprint
planning for each team, that takes place afterwards.

In addition to the product backlog and the sprint backlogs (for the individual
teams), nexus also has the nexus backlog. The nexus backlog is used to keep track of
dependencies between the tasks of the teams and contains only the backlog items
that have dependencies.

An additional extension is the nexus daily scrum, where a representative from each
team is present. In the nexus daily scrum potential dependencies in the current work
is to be briefly discussed.

Just like LeSS, the retrospective of nexus is divided into two parts. One retrospective
for each team and a joint retrospective to highlight how the teams work together.

10.4 SAFe

The SAFe framework is designed to make an entire company agile. It envisions
multiple products being developed with many teams and defines multiple levels to
manage and synchronize collaboration. In this description, we start at the bottom of
the team level and slowly work our way up to management.

Team Ebene

m Several scrum teams work together on one product. There is a common product
backlog but each team has its own sprint backlog, PO and SM.
There is no limitation how many teams can be integrated.

Several sprints are combined to a product increment of usually 3-4 months. At
the end of a product increment it is expected that an integrated increment has
been developed.

Agile Working with Multiple Teams

Program Level

The program manager develops medium-sized requirements (features) from the
epics of the higher levels. These are prioritized and then scheduled into the program
increments. The program manager is supported by other roles, such as system
architects or test managers.

Large Solution Level

This level is needed when the subject of consideration is a larger one. For example,
if we want to build a smart factory, then this layer is used to coordinate different
program layers with each other.

Portfolio Level

The top level in the company - this is where strategic decisions are usually made,
which are added into the product backlog in the form of epics and then prioritized.
Often, this role is fulfilled by the company’s executive board.

Bibliography

11. Bibliography

[LeSS] https://less.works
[Nexus] https://www.scrum.org/resources/nexus-guide
[Rupp 21] Rupp C. und die SOPHISTen: Requirements-Engineering und

-Management. Das Handbuch fir Anforderungen in jeder
Situation, 7t" Edition, Munich 2021

[SAFe] https://www.scaledagileframework.com/

[Scrum@Scale] https://www.scrumatscale.com/scrum-at-scale-guide/

Notes

I I T T T R I I T T I I I I I I I A R R P P)

Requirements Engineering in Agility

The discipline of requirements engineering has been the core topic of SOPHIST for many years.
Whereas the earlier years of requirements engineering were primarily characterized by water-
fall-like projects, nowadays agile development is becoming increasingly common, especially
in software development. This also has an effect on the techniques and working methods in
requirements engineering, because the framework conditions are completely different here.
However, this does not mean that requirements engineering is no longer carried out in agile
development, it just often looks different and is carried out at different times than in the
classic approach.

In this brochure, we deal with the areas of agility that involve eliciting, communicating, and de-
riving good requirements. These are the main activities of Requirments Engineering. Keywords
which can be found in this brochure are:

User Stories
Product Backlog
Prioritizing
Refinement

Editing User Stories
Roadmaps

Scaling aility

etc.

With all these terms, the main focus is always on our core topic:
Requirements Engineering

	1.	Introduction
	1.1 What is Requirements Engineering?
	1.2 What is agility?
	1.3 RE in agility

	2.	Goals/Vision, Stakeholder, Delimitation of the System
	2.1 Goals/Vision
	2.2 Stakeholder
	2.3 System Context

	3.	From Requirements to the Product
	4.	Eliciting Requirements
	5.	Documentation of the Requirements
	5.1 The Product Backlog
	5.2 From Product Backlog Items to User Stories

	6.	Deriving Good Requirements and Communicate Them
	6.1  Decomposition of Backlog Items
	6.2 Discuss Backlog Items
	6.3 Estimate
	6.4 Prioritize

	7.	Product Backlog and other Artifacts
	8.	Roadmap, Release Planning
	8.1 Roadmap
	8.2 Development Strategies

	9.	Implementing Agility in the Organization
	10.	Agile Working with Multiple Teams
	10.1 Scrum@Scale
	10.2 LeSS
	10.3 Nexus
	10.4 SAFe

	11.	Bibliography

	Schaltfläche 4:

